

Buildroot: what's new?

Thomas Petazzoni thomas.petazzoni@bootlin.com

© Copyright 2004-2022, Bootlin.

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

Thomas Petazzoni

- Co-owner and CEO at Bootlin
 - Embedded Linux experts
 - Engineering services: Linux BSP development, kernel porting and drivers, Yocto/Buildroot integration, real-time, boot-time, security, multimedia
 - Training services: Embedded Linux, Linux kernel drivers, Yocto, Buildroot, graphics stack, boot-time, real-time
- ► Co-maintainer of **Buildroot**, contributor since 2008, 5200+ patches contributed.
- Former contributor to the Linux kernel, 900+ patches contributed.
- Program committee member and regular speaker at the Embedded Linux Conference
- Living in Toulouse, south west of France
- ► thomas@bootlin.com

https://bootlin.com/company/staff/thomas-petazzoni/

Agenda

- What is Buildroot?
- Comparison with Yocto
- ▶ What's new between 2020.05 and 2022.05
 - Some numbers
 - LTS and security maintenance
 - Security vulnerability tracking
 - Security default settings
 - SELinux integration improvements
 - Vendoring support for Go/Rust
 - Python changes
 - Significant new packages
 - Testing improvements
 - Toolchain improvements
 - Architecture support

- Is an Embedded Linux build system
 - Tool that automates the cross-compilation of a complete embedded Linux system from source
 - Builds: toolchain/compiler, bootloader and Linux kernel, complete root filesystem with user-space applications and libraries

- Is an Embedded Linux build system
 - Tool that automates the cross-compilation of a complete embedded Linux system from source
 - Builds: toolchain/compiler, bootloader and Linux kernel, complete root filesystem with user-space applications and libraries
- Similar aim as Yocto/OpenEmbedded, OpenWrt, PTXdist

- Is an Embedded Linux build system
 - Tool that automates the cross-compilation of a complete embedded Linux system from source
 - Builds: toolchain/compiler, bootloader and Linux kernel, complete root filesystem with user-space applications and libraries
- Similar aim as Yocto/OpenEmbedded, OpenWrt, PTXdist
- Relies on well-known technologies
 - GNU Make for the build, Kconfig for configuration

- Is an Embedded Linux build system
 - Tool that automates the cross-compilation of a complete embedded Linux system from source
 - Builds: toolchain/compiler, bootloader and Linux kernel, complete root filesystem with user-space applications and libraries
- Similar aim as Yocto/OpenEmbedded, OpenWrt, PTXdist
- Relies on well-known technologies
 - GNU Make for the build, Kconfig for configuration
- Simple to use and learn
 - make menuconfig → make → profit

- Is an Embedded Linux build system
 - Tool that automates the cross-compilation of a complete embedded Linux system from source
 - Builds: toolchain/compiler, bootloader and Linux kernel, complete root filesystem with user-space applications and libraries
- Similar aim as Yocto/OpenEmbedded, OpenWrt, PTXdist
- Relies on well-known technologies
 - GNU Make for the build, Kconfig for configuration
- Simple to use and learn
 - make menuconfig \rightarrow make \rightarrow profit
- ▶ 2800+ built-in packages for most popular open-source software stacks

- Is an Embedded Linux build system
 - Tool that automates the cross-compilation of a complete embedded Linux system from source
 - Builds: toolchain/compiler, bootloader and Linux kernel, complete root filesystem with user-space applications and libraries
- Similar aim as Yocto/OpenEmbedded, OpenWrt, PTXdist
- Relies on well-known technologies
 - GNU Make for the build, Kconfig for configuration
- Simple to use and learn
 - make menuconfig → make → profit
- ▶ 2800+ built-in packages for most popular open-source software stacks
- Very active community of developers/users, used by many companies: silicon vendors, embedded system manufacturers, hobbyists

- Is an Embedded Linux build system
 - Tool that automates the cross-compilation of a complete embedded Linux system from source
 - Builds: toolchain/compiler, bootloader and Linux kernel, complete root filesystem with user-space applications and libraries
- Similar aim as Yocto/OpenEmbedded, OpenWrt, PTXdist
- Relies on well-known technologies
 - GNU Make for the build, Kconfig for configuration
- Simple to use and learn
 - make menuconfig \rightarrow make \rightarrow profit
- ▶ 2800+ built-in packages for most popular open-source software stacks
- Very active community of developers/users, used by many companies: silicon vendors, embedded system manufacturers, hobbyists
- Oldest still maintained build system: started in 2001

The one question that everybody asks!

- What it builds
 - Yocto: builds a distribution, with binary packages and a package management system
 - Buildroot: builds a fixed functionality root filesystem, no binary packages
 - Note: binary packages are not necessarily a good thing for embedded!

- ► What it builds
- Configuration
 - Yocto: flexible, powerful but complex configuration description
 - Buildroot: very simple configuration system, but sometimes limited

- What it builds
- Configuration
- Build strategy
 - Yocto: complex and heavy logic, but with efficient caching of artifacts and "rebuild only what's needed" features
 - Buildroot: simple but somewhat dumb logic, no caching of built artifacts, full rebuilds needed for some config changes

- What it builds
- Configuration
- Build strategy
- Ecosystem
 - **Yocto**: (relatively) small common base in OpenEmbedded, lots of features supported in third party layers \rightarrow lots of things, but varying quality
 - **Buildroot**: everything in one tree \rightarrow perhaps less, but more consistent quality

- What it builds
- Configuration
- Build strategy
- Ecosystem
- Complexity/learning curve
 - Yocto: admittedly steep learning curve, bitbake remains a magic black box for most people
 - **Buildroot**: much smoother and shorter learning curve, tool is simple to approach, and reasonably simple to understand

- What it builds
- Configuration
- Build strategy
- Ecosystem
- Complexity/learning curve
- ▶ And also a matter of personal taste/preference, as often when choosing tools

Number of commits per Buildroot release

Number of contributors per Buildroot release

LTS and security maintenance

- ► Maintenance: security fixes, bug fixes
- ▶ YYYY.02 releases maintained for slightly over 12 months
- ▶ YYYY.{05,08,11} releases maintained for slightly over 3 months

LTS and security maintenance

- Process started with 2019.02.x
- ▶ Process now works well: review of all commits in *master* and decision if applicable to the current LTS branch
- 2020.02.x LTS branch
 - 1219 commits
 - 228 directly security related (probably more in reality)
 - 12 point releases: $2020.02.1 \rightarrow 2020.02.12$
 - End of life
- 2021.02.x LTS branch
 - 751 commits
 - 110 directly security related (same, probably more in reality)
 - 12 point releases: $2021.02.1 \rightarrow 2021.02.12$
 - End of life on April 6, 2022
- 2022.02.x LTS branch, current
 - Started in February 2022
 - End of life planned on April 2023

Security vulnerability tracking

- make pkg-stats matches your package set with the NIST security vulnerability database
 - CVE database: Common Vulnerability and Exposure
 - CPE database: Common Platform Enumeration
 - HTML and JSON output

Security vulnerability tracking

- make pkg-stats matches your package set with the NIST security vulnerability database
 - CVE database: Common Vulnerability and Exposure
 - CPE database: Common Platform Enumeration
 - HTML and JSON output
- Checks if packages...
 - are affected by known CVEs
 - have a CPE identifier known in the CPE database

Security vulnerability tracking

- make pkg-stats matches your package set with the NIST security vulnerability database
 - CVE database: Common Vulnerability and Exposure
 - CPE database: Common Platform Enumeration
 - HTML and JSON output
- Checks if packages...
 - are affected by known CVEs
 - have a CPE identifier known in the CPE database
- Helped with metadata from the package .mk file
 - <pkg>_IGNORE_CVES to ignore matching CVEs if they are fixed locally by a security fix backport
 - <pkg>_CPE_ID_... to override the default CPE identifier for the package cpe:2.3:a:<pkg>_project:<pkg>:<pkg-version>:*:*:*:*:*

package/attr/attr.mk	2.4.48	2.5.1 found by <u>distro</u>	0	Link	N/A	cpe:2.3:a:attr_project:attr:2.4.48:*:*:*:*:*:*
package/acl/acl.mk	2.2.53	2.3.1 found by distro	0	<u>Link</u>	N/A	no verified CPE identifier
package/atop/atop.mk	2.6.0	2.6.0 found by distro	0	<u>Link</u>		cpe:2.3:a:atop_project:atop:2.6.0:*:*:*:*:*:*:*: CPE identifier unknown in CPE database
package/busybox/busybox.mk	1.33.0	1.33.1 found by distro	0	<u>Link</u>		cpe:2.3:a:busybox:busybox:1.33.0:*:*:*:*:*:*:* CPE identifier unknown in CPE database

package/attr/attr.mk	2.4.48	2.5.1 found by distro	0	<u>Link</u>	N/A	cpe:2.3:a:attr_project:attr:2.4.48:*:*:*:*:*:*

- ▶ some <pkg>_CPE_ID_* variables defined → CPE information verified
- ► CPE identifier exists in the CPE dictionary
- no known CVEs

package/acl/acl.mk	2.2.53	2.3.1 found by <u>distro</u>	0	Link	N/A	no verified CPE identifier
package/atop/atop.mk	2.6.0	2.6.0 found by distro	0	<u>Link</u>		cpe:2.3:a:atop_project:atop:2.6.0:*:*:*:*:*:* CPE identifier unknown in CPE database
package/busybox/busybox.mk	1.33.0	1.33.1 found by distro	0	<u>Link</u>		cpe:2.3:a:busybox:busybox:1.33.0:*:*:*:*:*:*:* CPE identifier unknown in CPE database

package/attr/attr.mk	2.4.48	2.5.1 found by distro	0	<u>Link</u>	N/A	cpe:2.3:a:attr_project:attr:2.4.48:*:*:*:*:*:*
package/acl/acl.mk	2.2.53	2.3.1 found by distro	0	<u>Link</u>	N/A	no verified CPE identifier

- ▶ no <pkg>_CPE_ID_* variable → don't know if the default CPE identifier is correct
- ightharpoonup based on this default CPE identifier ightharpoonup no known CVE

package/atop/atop.mk	2.6.0	2.6.0 found by distro	0	<u>Link</u>	CVE-2011-3618	cpe:2.3:a:atop_project:atop:2.6.0:*:*:*:*:*:* CPE identifier unknown in CPE database
package/busybox/busybox.mk	1.33.0	1.33.1 found by distro	0	Link	N/A	cpe:2.3:a:busybox:busybox:1.33.0:*;*:*:*:*:*:* CPE identifier unknown in CPE database

package/attr/attr.mk	2.4.48	2.5.1 found by <u>distro</u>	0	Link	N/A	cpe:2.3:a:attr_project:attr:2.4.48:*:*:*:*:*:*
package/acl/acl.mk	2.2.53	2.3.1 found by distro	0	Link	N/A	no verified CPE identifier
package/atop/atop.mk	2.6.0	2.6.0 found by distro	0	<u>Link</u>		cpe:2.3:a:atop_project:atop:2.6.8:*:*:*:*:*:* CPE identifier unknown in CPE database

- ▶ some <pkg>_CPE_ID_* variables defined → CPE information verified
- lacktriangle no entry in CPE dictionary ightarrow version 2.6.0 not known by NVD
- ► CVE-2011-3618 applicable: NVD database indicates it applies to all versions.

package/busybox/busybox.mk	1.33.0	1.33.1 found by distro	0	Link	N/A	cpe:2.3:a:busybox:busybox:1.33.0:*:*:*:*:*:* CPE identifier unknown in CPE database

package/attr/attr.mk	2.4.48	2.5.1 found by distro	0	Link	N/A	cpe:2.3:a:attr_project:attr:2.4.48:*:*:*:*:*:*
package/acl/acl.mk	2.2.53	2.3.1 found by distro	0	<u>Link</u>	N/A	no verified CPE identifier
package/atop/atop.mk	2.6.0	2.6.0 found by distro	0	<u>Link</u>		cpe:2.3:a:atop_project:atop:2.6.0:*:*:*:*:*:*:* CPE identifier unknown in CPE database
package/busybox/busybox.mk	1.33.0	1.33.1 found by distro	0	<u>Link</u>		cpe:2.3:a:busybox:busybox:1.33.0:*:*:*:*:*:* CPE identifier unknown in CPE database

- ▶ some <pkg>_CPE_ID_* variables defined → CPE information verified
- ightharpoonup no entry in CPE dictionary ightarrow version 1.33.0 not known by NVD
- no known CVEs

Security default settings

- ▶ Default configuration settings changed to enable more security-hardening features
- ► PIC/PIE (position independent) → needed for some other security features
- ▶ SSP (Stack Smashing Protection) enabled by default: -fstack-protector
- RELRO (RELocation Read Only) enabled by default, making additional ELF sections read-only
- ► FORTITY_SOURCE enabled by default, adds additional checks in the C library for buffer overflows

ightharpoonup Set the SELinux file security context at build time and not run-time ightharpoonup allows read-only root filesystems with SELinux enabled

- ightharpoonup Set the SELinux file security context at build time and not run-time ightharpoonup allows read-only root filesystems with SELinux enabled
- ► Reduce the size of the default policy from 2.4 MB to 250 KB, keeping only *base* SELinux policy modules

- ightharpoonup Set the SELinux file security context at build time and not run-time ightharpoonup allows read-only root filesystems with SELinux enabled
- ► Reduce the size of the default policy from 2.4 MB to 250 KB, keeping only *base* SELinux policy modules
- ► Allow the *refpolicy* package to
 - Enable additional modules
 - Provide additional custom modules

- ightharpoonup Set the SELinux file security context at build time and not run-time ightharpoonup allows read-only root filesystems with SELinux enabled
- ▶ Reduce the size of the default policy from 2.4 MB to 250 KB, keeping only base SELinux policy modules
- ► Allow the *refpolicy* package to
 - Enable additional modules
 - Provide additional custom modules
- Allow packages to enable additional SELinux modules
 - From the standard refpolicy using <pkg>_SELINUX_MODULES
 - Custom per-package ones in package/<pkg>/selinux/

SELinux integration improvements

- ightharpoonup Set the SELinux file security context at build time and not run-time ightharpoonup allows read-only root filesystems with SELinux enabled
- ▶ Reduce the size of the default policy from 2.4 MB to 250 KB, keeping only base SELinux policy modules
- ► Allow the *refpolicy* package to
 - Enable additional modules
 - Provide additional custom modules
- Allow packages to enable additional SELinux modules
 - From the standard refpolicy using <pkg>_SELINUX_MODULES
 - Custom per-package ones in package/<pkg>/selinux/
- Many packages annotated with <pkg>_SELINUX_MODULES

SYSTEMD_SELINUX_MODULES = systemd udev xdg

SELinux integration improvements

- ightharpoonup Set the SELinux file security context at build time and not run-time ightharpoonup allows read-only root filesystems with SELinux enabled
- ▶ Reduce the size of the default policy from 2.4 MB to 250 KB, keeping only base SELinux policy modules
- ► Allow the *refpolicy* package to
 - Enable additional modules
 - Provide additional custom modules
- Allow packages to enable additional SELinux modules
 - From the standard refpolicy using <pkg>_SELINUX_MODULES
 - Custom per-package ones in package/<pkg>/selinux/
- Many packages annotated with <pkg>_SELINUX_MODULES

SYSTEMD_SELINUX_MODULES = systemd udev xdg

► Contributions to upstream SELinux refpolicy to make it work with Buildroot

Vendoring support for Go/Rust (1)

- ► Go and Rust have language-specific package managers
- These package managers automatically download the dependencies
 - Described by go.mod in Go
 - Described by Cargo.toml in Rust

Vendoring support for Go/Rust (1)

- ► Go and Rust have language-specific package managers
- ▶ These package managers automatically download the dependencies
 - Described by go.mod in Go
 - Described by Cargo.toml in Rust
- They break fundamental features of build systems
 - Integration into a download infrastructure: caching, local backup site
 - Legal/license information collection: source code, license files
 - Reproducibility

Vendoring support for Go/Rust (2)

▶ Buildroot download infrastructure has been extended with *post-download helpers*

Vendoring support for Go/Rust(2)

- ▶ Buildroot download infrastructure has been extended with *post-download helpers*
- After downloading the main package source code, ability to run custom logic to finalize the download
 - support/download/go-post-process
 - support/download/cargo-post-process

Vendoring support for Go/Rust (2)

- ▶ Buildroot download infrastructure has been extended with *post-download helpers*
- After downloading the main package source code, ability to run custom logic to finalize the download
 - support/download/go-post-process
 - support/download/cargo-post-process
- Runs the Go or Rust specific tools to retrieve the dependencies
- Makes sure that
 - The tarball contains the full source code, dependencies included
 - The hash used by Buildroot to validate the tarball covers also the dependencies
 - All source code and license files are available in the tarball

Vendoring support for Go

- Existing golang-package infrastructure
- Extended to use the post-download helper

```
package/tinifier/tinifier.mk
```

```
TINIFIER_VERSION = 3.4.0
TINIFIER_SITE = $(call github,tarampampam,tinifier,v$(TINIFIER_VERSION))
TINIFIER_LICENSE = MIT
TINIFIER_LICENSE_FILES = LICENSE
TINIFIER_GOMOD = ./cmd/tinifier
$(eval $(golang-package))
```


Vendoring support for Rust

- Newly added cargo-package infrastructure
- Uses a post-download helper

```
package/bat/bat.mk
BAT_VERSION = 0.19.0
BAT_SITE = $(call github, sharkdp, bat, v$(BAT_VERSION))
BAT_LICENSE = Apache-2.0 or MIT
BAT_LICENSE_FILES = LICENSE-APACHE LICENSE-MIT
$(eval $(cargo-package))
```


Python changes: Python 2.x removed

- Python 2.x EOL upstream in January 2020
- ▶ Kept for some time in Buildroot, marked deprecated, to help migration
- Finally removed in 2022.02
- Allowed to remove a lot of complexity that was needed to support Python 2.x and Python 3.x in parallel

Python changes: PEP517 build system support

- Standard replacement for setup.py
- Uses a pyproject.toml file
- ► For now Buildroot supports flit based PEP517 build systems
- ▶ Needs <pkg>_SETUP_TYPE = flit

package/python-cssselect2/python-cssselect2.mk

```
PYTHON_CSSSELECT2_VERSION = 0.6.0

PYTHON_CSSSELECT2_SOURCE = cssselect2-$(PYTHON_CSSSELECT2_VERSION).tar.gz

PYTHON_CSSSELECT2_SITE = https://files.pythonhosted.org/packages/68/62/[...]

PYTHON_CSSSELECT2_SETUP_TYPE = flit

PYTHON_CSSSELECT2_LICENSE = BSD-3-Clause

PYTHON_CSSSELECT2_LICENSE_FILES = LICENSE

$(eval $(python-package))
```


Significant new packages

- ho pprox 290 new packages added between 2020.05 and 2022.05
- GNU Octave
- ► Tracing: bpftool, uftrace, ply, babeltrace2
- ARM Mali GPU drivers
- Zabbix
- liburing
- WirePlumber
- OpenCV 4
- libvirt
- OpenZFS
- PostGIS
- Additional Qt5 modules: Qt5Knx, Qt5Coap, Qt5Mqtt, Qt5Lottie
- ► 63 additional Python packages

CI testing improvements

- Already existing
 - Build-time testing of semi-random configurations, autobuild.buildroot.org
 - Suite of run-time tests, support/testing, tested in Gitlab CI
 - Defconfigs build tested, and if possible boot tested, in Gitlab CI

CI testing improvements

- Already existing
 - Build-time testing of semi-random configurations, autobuild.buildroot.org
 - Suite of run-time tests, support/testing, tested in Gitlab CI
 - Defconfigs build tested, and if possible boot tested, in Gitlab CI
- Improvement
 - Switch to fully random configurations for build-time testing
 - Architecture/toolchain config used to be taken from a set of pre-defined config
 - Only package set was randomized
 - Now the full configuration is randomized
 - Allowed to detect many corner cases, and fix them
 - Still on-going

- Buildroot already supports more CPU architectures than any other build system
 - Synopsys ARC (LE/BE), AArch64 (LE/BE), ARM (LE/BE, including no-MMU Cortex-M), C-SKY, x86 (32-bit/64-bit), m68k, Microblaze (LE/BE), MIPS (32-bit/64-bit, LE/BE), NIOSII, OpenRISC, PowerPC, Power64 (LE/BE), RISC-V (32-bit/64-bit), SuperH, SPARC (32-bit/64-bit), Cadence Xtensa

- Buildroot already supports more CPU architectures than any other build system
 - Synopsys ARC (LE/BE), AArch64 (LE/BE), ARM (LE/BE, including no-MMU Cortex-M), C-SKY, x86 (32-bit/64-bit), m68k, Microblaze (LE/BE), MIPS (32-bit/64-bit, LE/BE), NIOSII, OpenRISC, PowerPC, Power64 (LE/BE), RISC-V (32-bit/64-bit), SuperH, SPARC (32-bit/64-bit), Cadence Xtensa
- Addition of support for the S390x CPU architecture
 - Contributed and maintained directly by IBM

- Buildroot already supports more CPU architectures than any other build system
 - Synopsys ARC (LE/BE), AArch64 (LE/BE), ARM (LE/BE, including no-MMU Cortex-M), C-SKY, x86 (32-bit/64-bit), m68k, Microblaze (LE/BE), MIPS (32-bit/64-bit, LE/BE), NIOSII, OpenRISC, PowerPC, Power64 (LE/BE), RISC-V (32-bit/64-bit), SuperH, SPARC (32-bit/64-bit), Cadence Xtensa
- Addition of support for the S390x CPU architecture
 - Contributed and maintained directly by IBM
- Addition of support for the RISC-V 64-bit no-MMU architecture
 - Contributed mainly by Western Digital

- Buildroot already supports more CPU architectures than any other build system
 - Synopsys ARC (LE/BE), AArch64 (LE/BE), ARM (LE/BE, including no-MMU Cortex-M), C-SKY, x86 (32-bit/64-bit), m68k, Microblaze (LE/BE), MIPS (32-bit/64-bit, LE/BE), NIOSII, OpenRISC, PowerPC, Power64 (LE/BE), RISC-V (32-bit/64-bit), SuperH, SPARC (32-bit/64-bit), Cadence Xtensa
- Addition of support for the S390x CPU architecture
 - Contributed and maintained directly by IBM
- Addition of support for the RISC-V 64-bit no-MMU architecture
 - Contributed mainly by Western Digital
- ► Removal of NDS32 happening soon
 - Follows removal of NDS32 from upstream Linux

Toolchain support

- Two choices in Buildroot for the toolchain/compiler:
 - Internal toolchain: Buildroot builds the full toolchain from source, i.e binutils, C library, kernel headers, gcc, gdb
 - External toolchain: Buildroot uses an existing pre-compiled cross-compilation toolchain

Toolchain support

- Two choices in Buildroot for the toolchain/compiler:
 - Internal toolchain: Buildroot builds the full toolchain from source, i.e binutils, C library, kernel headers, gcc, gdb
 - External toolchain: Buildroot uses an existing pre-compiled cross-compilation toolchain
- Improvements
 - Internal toolchain: mainly updates to follow the latest upstream release of all components
 - External toolchain: main change is the direct support for 198 pre-built toolchains from toolchains.bootlin.com

Buildroot training course

- Bootlin has a full training course on Buildroot
- Taught by your speaker
- ► Training materials are freely available
 - Like for all Bootlin training courses
- Next public on-line course September 5-9, 2022

https://bootlin.com/training/buildroot/

Questions? Suggestions? Comments?

Thomas Petazzoni

thomas.petazzoni@bootlin.com

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/2022/elc/petazzoni-buildroot-whats-new/