
Live Embedded Event, June 3rd 2021

Understanding U-Boot
Falcon Mode
Michael Opdenacker
michael.opdenacker@bootlin.com

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/28

Michael Opdenacker

▶ Founder and Embedded Linux engineer at Bootlin:
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Focusing only on Free and Open Source Software

▶ Free Software contributor:
▶ Current maintainer of the Elixir Cross Referencer,

making it easier to study the sources of big C projects
like the Linux kernel. See
https://elixir.bootlin.com

▶ Co-author of Bootlin’s freely available embedded Linux
and kernel training materials
(https://bootlin.com/docs/)

▶ Former maintainer of GNU Typist

Project
selection

Identifier
search

Source
browsing

All versions
available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/28

https://elixir.bootlin.com
https://bootlin.com/docs/
https://www.gnu.org/software/gtypist/

Goal: boot faster!

U-Boot Falcon Mode is about
reducing the time spent in the
bootloader.

Falcons are the fastest animals on Earth!
Image credits: https://openclipart.org/detail/287044/falcon-2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/28

https://openclipart.org/detail/287044/falcon-2

Example: booting on Microchip SAMA5D36

You first need to understand how your SoC boots:

Source: Microchip SAMA5D36 datasheet
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet_B.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/28

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet_B.pdf

Normal and Falcon boot on Microchip SAMA5D3

Boot process with U-Boot

▶ RomBoot: tries to find a valid bootstrap image from various
storage sources, and load it into SRAM (DRAM not initialized
yet). Size limited to the SRAM size (here 64 KB).

▶ U-Boot SPL (Secondary Program Loader): runs from SRAM
(inside the SoC). Initializes the DRAM controller plus storage
devices (MMC, NAND), loads the secondary bootloader into
DRAM and starts it. Much bigger size limits!

▶ U-Boot: runs from DRAM. Initializes other hardware devices
(network, USB, etc.). Loads the kernel image from storage or
network to DRAM and starts it.
This is the part that can be skipped

▶ Linux Kernel: runs from DRAM. Takes over the system
completely (the bootloader no longer exists).

This scheme applies to all modern SoCs. Boot process without U-Boot
(Falcon mode)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/28

Falcon mode advantages and drawbacks

▶ Main advantage: since Linux and U-Boot are both loaded to RAM,
U-Boot’s Falcon Mode mainly saves time by directly loading Linux from the SPL
instead of loading and executing the full U-Boot first.

▶ Drawback: you lose the flexibility brought by the full U-Boot. You have to follow
a special procedure to update the kernel binary, DTB and kernel command line
parameters.

▶ Advantage: the interactivity offered by the full U-Boot is not necessary on a
production device. Falcon boot works in the same way on all SoCs on which
U-Boot SPL is supported. This makes it easier to apply this technique on all your
projects!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/28

What U-Boot does (1)

U-Boot has multiple ways of preparing the kernel boot:
▶ ATAGS - The old way (before Device Tree)

U-Boot prepares the Linux kernel command line (bootargs), the machine ID and
other information for Linux in a tagged list, and passes its address to Linux
through a register.

▶ Flattened Device Tree - The standard way
▶ U-Boot checks the device tree loaded in RAM or directly provides its own.
▶ U-Boot checks the specifics of the hardware (amount and location of RAM, MAC

address, present devices...), possibly loads corresponding Device Tree overlays, and
modifies (fixes-up) the Device Tree accordingly.

▶ U-Boot stores the Linux kernel command line (bootargs) in the chosen section in
the Device Tree.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/28

What U-Boot does (2)

▶ FIT Image - The new way
▶ U-Boot loads the kernel(s), device tree(s), initramfs image(s), signature(s) from a

single file (FIT Image)
▶ That’s used for secure booting, for booting recovery images, etc.
▶ U-Boot also implements Device Tree fix-ups, of course.

Using the spl export command in U-Boot, you can do such preparation work ahead
of time.
▶ In this presentation, we just cover standard Device Tree booting.
▶ U-Boot also has support for FIT Image loading in the SPL, but that may still be a

bit experimental, and such code must fit within your maximum allowable size for
the SPL.
See arch/arm/cpu/armv8/fsl-layerscape/doc/README.falcon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/28

https://elixir.bootlin.com/u-boot/latest/source/arch/arm/cpu/armv8/fsl-layerscape/doc/README.falcon

Falcon mode usage overview (1)

Here are the generic steps you need to go through:
▶ Recompile U-Boot with support for Falcon Mode (CONFIG_SPL_OS_BOOT), with

support for spl export (CONFIG_CMD_SPL), and for the way you want to boot.
▶ Also make sure that CONFIG_SPL_SIZE_LIMIT is set (find the SRAM size for

your CPU, 0x10000 for SAMA5D36), otherwise, U-Boot won’t complain when
the SPL is bigger.

▶ Build the kernel legacy uImage file from zImage (see next slides)
▶ Set the kernel command line (bootargs environment variable)
▶ Load the uImage, initramfs (if any) and Device Tree images to RAM as usual.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/28

https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_OS_BOOT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_CMD_SPL
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_SIZE_LIMIT

Falcon mode usage overview (2)

Continued...
▶ Have U-Boot execute the preprocessing before booting Linux, but stop right

before doing it:
spl export fdt <kernel-addr> <initramfs-addr> <dtb-addr>

▶ Save the exported data (ARGS) from RAM to storage, in Flattened Device Tree
form, so that the SPL can load it and directly pass it to the Linux kernel. The
below environment variables will help:
▶ fdtargsaddr: location of ARGS in RAM
▶ fdtargslen: size of ARGS in RAM

▶ If supported by your board (code explanations given later), set your boot_os
environment variable to yes/Yes/true/True/1 to enable direct OS booting.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/28

spl export example output

=> fatload mmc 0:1 0x21000000 uImage
5483584 bytes read in 530 ms (9.9 MiB/s)
=> fatload mmc 0:1 0x22000000 dtb
27795 bytes read in 7 ms (3.8 MiB/s)
=> setenv bootargs console=ttyS0,115200
=> spl export fdt 0x21000000 - 0x22000000
Booting kernel from Legacy Image at 21000000 ...

Image Name: Linux-5.12.6
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 5483520 Bytes = 5.2 MiB
Load Address: 20008000
Entry Point: 20008000
Verifying Checksum ... OK

Flattened Device Tree blob at 22000000
Booting using the fdt blob at 0x22000000
Loading Kernel Image
Loading Device Tree to 2fb2c000, end 2fb35c92 ... OK

subcommand not supported
subcommand not supported

Loading Device Tree to 2fb1f000, end 2fb2bc92 ... OK
Argument image is now in RAM: 0x2fb1f000

Image credits:
https://openclipart.org/detail/292953/horus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/28

https://openclipart.org/detail/292953/horus

How to create the uImage file

Microchip SAMA5D3 Xplained board example
▶ Need to know the loading address that should be used for your board. Usually on

ARM32, it’s the starting physical address of RAM plus 0x8000.
▶ Either generate it from the Linux build system:

make LOADADDR=0x20008000 uImage

▶ Or generate it using U-Boot’s mkimage command:

mkimage -A arm -O linux -C none -T kernel \
-a 0x20008000 -e 0x20008000 \
-n "Linux-5.12.6" \
-d arch/arm/boot/zImage arch/arm/boot/uImage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/28

U-Boot code changes to support a new board (1)

Your board/<vendor>/<board>/<board>.c file must at least
implement the spl_start_uboot() function.
Here’s the most typical example:

#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{

if (CONFIG_IS_ENABLED(SPL_SERIAL_SUPPORT) && serial_tstc() && serial_getc() == 'c')
/* break into full u-boot on 'c' */
return 1;

if (CONFIG_IS_ENABLED(SPL_ENV_SUPPORT)) {
env_init();
env_load();
if (env_get_yesno("boot_os") != 1)

return 1;
}
return 0;

}
#endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/28

https://elixir.bootlin.com/u-boot/latest/ident/spl_start_uboot

U-Boot code changes to support a new board (2)

If you cannot fit support for an environment in the SPL,
the spl_start_uboot() function can be simpler:

#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{

if (CONFIG_IS_ENABLED(SPL_SERIAL_SUPPORT) && serial_tstc() && serial_getc() == 'c')
/* break into full u-boot on 'c' */
return 1;

return 0;
}
#endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/28

https://elixir.bootlin.com/u-boot/latest/ident/spl_start_uboot

U-Boot code changes to support a new board (3)

Or even, if reading characters from the serial line doesn’t work:

#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{

return 0;
}
#endif

You may also need extra defines to be set, but you will find which ones are missing at
compile time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/28

How to fall back to U-Boot

▶ If supported by your board, hit the specified key on the
serial console and back in U-Boot, disable the boot_os
environment variable. That’s it.

▶ Otherwise, try to cause OS loading to fail. The easiest
way is to erase the kernel binary and if needed the
spl export output.

▶ If this doesn’t work, re-compile and update the SPL
without Falcon mode support, or temporarily modify
the spl_start_uboot() function to always return 1.
This way, you don’t lose your configuration.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/28

https://elixir.bootlin.com/u-boot/latest/ident/spl_start_uboot

Booting from raw MMC - Proposed storage layout

For use on Microchip SAMA5D3 Xplained

Offset
(512 b sector)

Offset
(bytes)

Contents

0x0 0 MBR
(Master Boot Record)

0x100 128 KiB SPL ARGS
0x200 256 KiB u-boot.img
0x1000 2 MiB uImage
0x4000 16 MiB Start of FAT partition

▶ A FAT partition is required to store
the SPL file (boot.bin). SAMA5D36
doesn’t support an SPL file on raw
MMC (unlike i.MX6).

▶ Caution: partition offsets should be a
multiple of the segment size, as
indicated by the device’s
preferred_erase_size attribute
under /sys/bus/mmc/devices/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/28

Booting from raw MMC - Configuration

U-Boot configuration (starting from sama5d3_xplained_mmc_defconfig):
CONFIG_SPL_OS_BOOT=y
SPL_SIZE_LIMIT=0x10000
CONFIG_SPL_LEGACY_IMAGE_SUPPORT=y
CONFIG_SPL_MMC_SUPPORT=y
CONFIG_CMD_SPL=y
CONFIG_CMD_SPL_WRITE_SIZE=0x7000
CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR=0x200
CONFIG_SPL_FS_FAT is not set

include/configs/sama5d3_xplained.h
#define CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTOR 0x100 /* 256 KiB */
#define CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTORS (CONFIG_CMD_SPL_WRITE_SIZE / 512)
#define CONFIG_SYS_MMCSD_RAW_MODE_KERNEL_SECTOR 0x1000 /* 2 MiB */
#define CONFIG_SYS_SPL_ARGS_ADDR 0x22000000

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/28

https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_OS_BOOT
https://elixir.bootlin.com/u-boot/latest/K/ident/SPL_SIZE_LIMIT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_LEGACY_IMAGE_SUPPORT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_MMC_SUPPORT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_CMD_SPL
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_CMD_SPL_WRITE_SIZE
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_FS_FAT

Booting from Raw MMC - Writing to raw storage

On your GNU/Linux host:
▶ Write U-Boot (using the same block size as

sector size, to get the same offsets):
sudo dd if=u-boot.img of=/dev/sdc bs=512\
seek=512 conv=sync

▶ Write uImage:
sudo dd if=uImage of=/dev/sdc bs=512 \
seek=4096 conv=sync

▶ Reminder: in our case (SAMA5D36), the SPL is
copied to boot.bin in a FAT partition.

On your U-Boot target,
after spl export:

▶ Select the right MMC
device for mmc write:
=> mmc list
Atmel mci: 0 (SD)
Atmel mci: 1

=> mmc dev 0
switch to partitions #0, OK
mmc0 is current device

▶ Check the size of ARGS
=> printenv fdtargslen

▶ Divide it by the sector size (512), and convert it
to hexadecimal (round it up), and use the value
to save the ARGS to raw MMC:
=> mmc write ${fdtargsaddr} 0x100 0x67

▶ Caution: the last argument of mmc write is a
number of sectors. If you pass a number of
bytes, you’ll erase your FAT partition!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/28

Booting from Raw MMC - Results and notes

Reference test
▶ Loading zImage and dtb from FAT through

fatload and using a zero bootdelay:
setenv bootdelay 0
setenv bootcmd 'fatload mmc 0:
1 0x21000000 zImage; fatload mmc 0:
1 0x22000000; bootz 0x21000000 -
0x22000000'

▶ Not completely fair because we have the
filesystem overhead, but that’s the standard /
easiest way on MMC. We could have loaded
images from raw MMC, but that’s very
inconvenient.

▶ Best result (using grabserial):
[3.452681 0.000099] Please press Enter to
activate this console.

Falcon boot test
▶ Best result:

[3.191228 0.000134] Please press Enter to
activate this console.

▶ We saved 261 ms, but that’s disappointing.
▶ Adding instrumentation to the SPL allowed us to

understand why:
▶ Time to load the kernel from U-Boot /

FAT: 530 ms
▶ Time to load the kernel from SPL / raw

MMC: 1.010 ms
▶ Here the specific MMC driver in SPL has poor

performance (lack of DMA?)
▶ We had much better results on different

hardware, such as saving 1.2s on i.MX6, and 478
ms on TI AM3359 (Beagle Bone Black).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/28

Booting from raw NAND - Configuration

Proposed NAND layout
For use on Microchip SAMA5D3 Xplained

Offset Size Contents
0x0 256 KiB SPL (spl/u-boot-spl.bin)
0x40000 1 MiB U-Boot (u-boot.bin)
0x140000 128 KiB U-Boot redundant environment
0x160000 128 KiB U-Boot environment
0x180000 128 KiB Original DTB or CMD
0x1a0000 6.375 MiB uImage
0x800000 Other partitions

Notes:
▶ Only the SPL offset is hardcoded
▶ All others can be configured differently
▶ Offsets must be a multiple of the erase block

size (128 KiB)

U-Boot configuration
CONFIG_SPL_OS_BOOT=y
SPL_SIZE_LIMIT=0x10000
CONFIG_ENV_OFFSET=0x160000
CONFIG_ENV_OFFSET_REDUND=0x140000
CONFIG_SPL_LEGACY_IMAGE_SUPPORT=y
CONFIG_SPL_NAND_SUPPORT=y
CONFIG_SPL_NAND_DRIVERS=y
CONFIG_SPL_NAND_BASE=y
CONFIG_CMD_SPL_WRITE_SIZE=0x7000
CONFIG_CMD_SPL_NAND_OFS=0x180000
(starting from
sama5d3_xplained_nandflash_defconfig)

include/configs/sama5d3_xplained.h
/* Generic settings */
#define CONFIG_SYS_NAND_U_BOOT_OFFS 0x40000

/* Falcon boot support on raw NAND */
#define CONFIG_SYS_NAND_SPL_KERNEL_OFFS 0x1a0000

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/28

https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_OS_BOOT
https://elixir.bootlin.com/u-boot/latest/K/ident/SPL_SIZE_LIMIT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_ENV_OFFSET
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_ENV_OFFSET_REDUND
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_LEGACY_IMAGE_SUPPORT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_NAND_SUPPORT
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_NAND_DRIVERS
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_NAND_BASE
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_CMD_SPL_WRITE_SIZE
https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_CMD_SPL_NAND_OFS

Booting from raw NAND - Results and notes

▶ Reference test
▶ To be fair, using a zero bootdelay and the exact zImage and dtb size:

setenv bootdelay 0
setenv bootcmd 'nand read 0x21000000 0x1a0000 0x53ac00; nand read
0x22000000 0x180000 0x6c93; bootz 0x21000000 - 0x22000000'

▶ Best result (using grabserial):
[4.320618 0.000470] Please press Enter to activate this console.

▶ Falcon boot test
▶ Best result (using grabserial):

[3.768543 0.000125] Please press Enter to activate this console.
▶ We saved 552 ms!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/28

U-Boot code and debugging Falcon Mode

▶ Depending on how you boot, read the corresponding
code:
▶ common/spl/spl_mmc.c
▶ common/spl/spl_nand.c
▶ Other files in common/spl/

▶ If booting doesn’t work, the easiest way is to add
puts(); lines to trace strategic functions and check
return values. You’ll get the messages in the serial
console.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/28

https://elixir.bootlin.com/u-boot/latest/source/common/spl/spl_mmc.c
https://elixir.bootlin.com/u-boot/latest/source/common/spl/spl_nand.c
https://elixir.bootlin.com/u-boot/latest/source/common/spl/

Issues and lessons learned (1)

▶ SPL storage driver performance: not on all platforms,
but at least here on Microchip SAMA5.

▶ Features limited by space: what can be done with Falcon booting is not limited by
U-Boot features, but by how much code can fit in the limited SRAM.
This is why I couldn’t show Falcon booting from a FAT partition, because adding
support for this filesystem and disk partitions to the SPL doesn’t fit in the
maximum size possible on the particular platform chosen for the demo.

▶ U-Boot initializations: in addition to the FDT fixups without which the Linux
kernel may not boot, the Linux kernel may also rely on some initializations
performed by U-Boot. Before such dependencies can be removed by updating
kernel drivers, you may need to hardcode such initializations in the SPL, provided
you have enough space!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/28

Issues and lessons learned (2)

▶ Limited automation: while the uImage file can be updated automatically in the
storage image, any change in the kernel command line or Device Tree must go
through the spl export command on the board. The FDT fixups done by
U-Boot are not trivial to reproduce. This makes it difficult to prepare production
images without a manual step in U-Boot.

▶ No decompression: U-Boot currently doesn’t seem to support decompression in
the SPL. If your architecture doesn’t support kernel self-decompression and relies
on the bootloader (e.g. arm64 or riscv), Falcon mode won’t be available.

▶ Side note: Found that U-Boot’s bootm was noticeably slower than bootz (+170
ms)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/28

Further work

▶ Improve raw MMC read performance in the SPL on
Microchip SAMA5

▶ Didn’t try with what U-Boot calls the Raw kernel
images yet, supported with
CONFIG_SPL_RAW_IMAGE_SUPPORT. Assuming this
corresponds to the arch/arm/boot/Image

▶ Didn’t try FIT Image support in SPL yet. Will try on an
SoC with more space for SPL (i.MX)

Image credits:
https://openclipart.org/detail/

224913/clip-is-a-brick-star-wars-
millenium-falcon-set-4488

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/28

https://elixir.bootlin.com/u-boot/latest/K/ident/CONFIG_SPL_RAW_IMAGE_SUPPORT
https://openclipart.org/detail/224913/clip-is-a-brick-star-wars-millenium-falcon-set-4488
https://openclipart.org/detail/224913/clip-is-a-brick-star-wars-millenium-falcon-set-4488
https://openclipart.org/detail/224913/clip-is-a-brick-star-wars-millenium-falcon-set-4488

References

▶ Bootlin’s U-Boot patch to support Falcon boot on SAMA5D3 Xplained:
https://lists.denx.de/pipermail/u-boot/2021-May/451107.html

▶ Bootlin’s Embedded Linux Boot Time Optimization course with free training
materials: https://bootlin.com/training/boot-time/

▶ U-Boot’s doc/README.falcon file
▶ Linus Walleij: How the ARM32 kernel decompresses:

https://people.kernel.org/linusw/how-the-arm32-linux-kernel-
decompresses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/28

https://lists.denx.de/pipermail/u-boot/2021-May/451107.html
https://bootlin.com/training/boot-time/
https://elixir.bootlin.com/u-boot/latest/source/doc/README.falcon
https://people.kernel.org/linusw/how-the-arm32-linux-kernel-decompresses
https://people.kernel.org/linusw/how-the-arm32-linux-kernel-decompresses

This Is How You Win the Time War Questions?
Suggestions?
Comments?

Michael Opdenacker
michael.opdenacker@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2021/lee/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/28

https://bootlin.com/pub/conferences/2021/lee/

	Understanding U-Boot Falcon Mode

