
Embedded Linux Conference Europe 2015

Supporting multi-function devices in the Linux kernel:
a tour of the mfd, regmap and syscon APIs

Alexandre Belloni
Bootlin
alexandre.belloni@bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/30

Alexandre Belloni

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Open-source contributor
▶ Maintainer for the Linux kernel RTC

subsystem
▶ Co-Maintainer of kernel support for Atmel

ARM processors
▶ Contributing to kernel support for Marvell

ARM (Berlin) processors

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/30

What is a multi-function device ?

▶ An external peripheral or a hardware block exposing more than a single
functionality

▶ Examples:
▶ PMICs

▶ da9063: regulators, led controller, watchdog, rtc, temperature sensor, vibration motor
driver, ON key

▶ max77843: regulators, charger, fuel gauge, haptic feedback, LED controller, micro
USB interface controller

▶ wm831x: regulator, clocks, rtc, watchdog, touch controller, temperature sensor,
backlight controller, status LED controller, GPIOs, ON key, ADC

▶ some even include a codec
▶ atmel-hlcdc: display controller and backlight pwm
▶ Diolan DLN2: USB to I2C, SPI and GPIO controllers
▶ Realtek PCI-E card reader: SD/MMC and memory stick reader

▶ The main issue is to register those in different kernel subsystems. In particular the
external peripherals are represented by only one struct device (or the
specialized i2c_client or spi_device)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/30

MFD subsystem

▶ The MFD subsystem has been created to handle those devices
▶ Allows to register the same device in multiple subsystems
▶ The MFD driver has to multiplex access on the bus (mainly takes care of locking)

and handle IRQs
▶ May handle clocks
▶ May also need to configure the IP
▶ May do variant or functions detection
▶ Other benefit: allows driver reuse, multiple MFD can reuse drivers from other

subsystems.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/30

MFD API

▶ Defined in include/linux/mfd/core.h
▶ Implemented in drivers/mfd/mfd-core.c

▶ int mfd_add_devices(struct device *parent, int id,
const struct mfd_cell *cells, int n_devs,
struct resource *mem_base,
int irq_base, struct irq_domain *irq_domain);

▶ extern void mfd_remove_devices(struct device *parent);

▶ Also mfd_add_hotplug_devices, mfd_clone_cell, mfd_cell_enable,
mfd_cell_disable but they are seldom used.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/30

struct mfd_cell

struct mfd_cell {
const char *name;
int id;

[...]
/* platform data passed to the sub devices drivers */
void *platform_data;
size_t pdata_size;
/*
* Device Tree compatible string
* See: Documentation/devicetree/usage-model.txt Chapter 2.2 for details
*/

const char *of_compatible;
[...]

/*
* These resources can be specified relative to the parent device.
* For accessing hardware you should use resources from the platform dev
*/

int num_resources;
const struct resource *resources;

[...]
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/30

Example: tps6507x - registration

static const struct i2c_device_id tps6507x_i2c_id[] = {
{ "tps6507x", 0 },
{ }

};
MODULE_DEVICE_TABLE(i2c, tps6507x_i2c_id);

#ifdef CONFIG_OF
static const struct of_device_id tps6507x_of_match[] = {

{.compatible = "ti,tps6507x", },
{},

};
MODULE_DEVICE_TABLE(of, tps6507x_of_match);
#endif

static struct i2c_driver tps6507x_i2c_driver = {
.driver = {

.name = "tps6507x",

.of_match_table =
of_match_ptr(tps6507x_of_match),

},
.probe = tps6507x_i2c_probe,
.remove = tps6507x_i2c_remove,
.id_table = tps6507x_i2c_id,

};

static int __init tps6507x_i2c_init(void)
{

return i2c_add_driver(&tps6507x_i2c_driver);
}
/* init early so consumer devices can complete system boot */
subsys_initcall(tps6507x_i2c_init);

static void __exit tps6507x_i2c_exit(void)
{

i2c_del_driver(&tps6507x_i2c_driver);
}
module_exit(tps6507x_i2c_exit);

▶ registers as a simple i2c device
▶ only oddity subsys_

initcall(tps6507x_i2c_init); to
register early enough

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/30

Example: tps6507x - probing

static const struct mfd_cell tps6507x_devs[] = {
{

.name = "tps6507x-pmic",
},
{

.name = "tps6507x-ts",
},

};

▶ tps6507x-pmic in
drivers/regulator/tps6507x-regulator.c

▶ tps6507x-ts in
drivers/input/touchscreen/tps6507x-ts.c

static int tps6507x_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)

{
struct tps6507x_dev *tps6507x;
tps6507x = devm_kzalloc(&i2c->dev, sizeof(struct tps6507x_dev),

GFP_KERNEL);
if (tps6507x == NULL)

return -ENOMEM;
i2c_set_clientdata(i2c, tps6507x);
tps6507x->dev = &i2c->dev;
tps6507x->i2c_client = i2c;
tps6507x->read_dev = tps6507x_i2c_read_device;
tps6507x->write_dev = tps6507x_i2c_write_device;
return mfd_add_devices(tps6507x->dev, -1, tps6507x_devs,

ARRAY_SIZE(tps6507x_devs), NULL, 0, NULL);
}- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/30

Example: tps6507x - struct tps6507x_dev

struct tps6507x_dev {
struct device *dev;
struct i2c_client *i2c_client;
int (*read_dev)(struct tps6507x_dev *tps6507x, char reg, int size,

void *dest);
int (*write_dev)(struct tps6507x_dev *tps6507x, char reg, int size,

void *src);
[...]
};

▶ Defined in include/linux/mfd/tps6507x.h
▶ Allows to pass the i2c_client and the accessors.
▶ tps6507x.h also contains the register definitions that can be used in the function

drivers.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/30

Example: tps6507x - function drivers

static int tps6507x_ts_probe(struct platform_device *pdev)
{

struct tps6507x_dev *tps6507x_dev = dev_get_drvdata(pdev->dev.parent);
[...]
};

static int tps6507x_pmic_probe(struct platform_device *pdev)
{

struct tps6507x_dev *tps6507x_dev = dev_get_drvdata(pdev->dev.parent);
[...]
};

▶ Easy to get the struct tps6507x_dev by using dev.parent

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/30

Example: da9063 - registering

static struct resource da9063_rtc_resources[] = {
{

.name = "ALARM",

.start = DA9063_IRQ_ALARM,

.end = DA9063_IRQ_ALARM,

.flags = IORESOURCE_IRQ,
},
{

.name = "TICK",

.start = DA9063_IRQ_TICK,

.end = DA9063_IRQ_TICK,

.flags = IORESOURCE_IRQ,
}

};
static const struct mfd_cell da9063_devs[] = {
[...]

{
.name = DA9063_DRVNAME_RTC,
.num_resources = ARRAY_SIZE(da9063_rtc_resources),
.resources = da9063_rtc_resources,
.of_compatible = "dlg,da9063-rtc",

},
[...]
};

▶ resources are defined
like it was done using
platform_data

▶ in that case, they are
named for easy
retrieval

▶ when using
.of_compatible, the
function has to be a
child of the MFD (see
bindings)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/30

Example: da9063 - drivers/rtc/rtc-da9063.c

static int da9063_rtc_probe(struct platform_device *pdev)
{
[...]

irq_alarm = platform_get_irq_byname(pdev, "ALARM");
ret = devm_request_threaded_irq(&pdev->dev, irq_alarm, NULL,

da9063_alarm_event,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
"ALARM", rtc);

if (ret) {
dev_err(&pdev->dev, "Failed to request ALARM IRQ %d: %d\n",

irq_alarm, ret);
return ret;

}
[...]
};

▶ Use platform_get_resource, platform_get_resource_byname,
platform_get_irq, platform_get_irq_byname to retrieve the resources

▶ Doesn’t even need dev.parent, the same driver could be used for an MFD and a
standalone chip.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/30

Example: da9063 - DT bindings

pmic0: da9063@58 {
compatible = "dlg,da9063"
reg = <0x58>;
interrupt-parent = <&gpio6>;
interrupts = <11 IRQ_TYPE_LEVEL_LOW>;
interrupt-controller;

rtc {
compatible = "dlg,da9063-rtc";

};
[...]
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/30

MFD: multiplexing register access

▶ A common way of multiplexing access to
register sets is to use regmap.

▶ Create the regmap from the MFD driver and
pass it down to the children

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/30

regmap

▶ has its roots in ASoC (ALSA)
▶ can use I2C, SPI and MMIO (also SPMI)
▶ actually abstracts the underlying bus
▶ can handle locking when necessary
▶ can cache registers
▶ can handle endianness conversion
▶ can handle IRQ chips and IRQs
▶ can check register ranges
▶ handles read only, write only, volatile, precious registers
▶ handles register pages
▶ API is defined in include/linux/regmap.h
▶ implemented in drivers/base/regmap/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/30

regmap: creation

▶ #define regmap_init(dev, bus, bus_context, config) \
__regmap_lockdep_wrapper(__regmap_init, #config, \

dev, bus, bus_context, config)

▶ #define regmap_init_i2c(i2c, config) \
__regmap_lockdep_wrapper(__regmap_init_i2c, #config, \

i2c, config)

▶ #define regmap_init_spi(dev, config) \
__regmap_lockdep_wrapper(__regmap_init_spi, #config, \

dev, config)

▶ Also devm_ versions
▶ and _clk versions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/30

regmap: access

▶ int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val);

▶ int regmap_write(struct regmap *map, unsigned int reg, unsigned int val);

▶ int regmap_update_bits(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/30

regmap: cache management

▶ int regcache_sync(struct regmap *map);

▶ int regcache_sync_region(struct regmap *map, unsigned int min,
unsigned int max);

▶ int regcache_drop_region(struct regmap *map, unsigned int min,
unsigned int max);

▶ void regcache_cache_only(struct regmap *map, bool enable);

▶ void regcache_cache_bypass(struct regmap *map, bool enable);

▶ void regcache_mark_dirty(struct regmap *map);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/30

Example: atmel-hlcdc

include/linux/mfd/atmel-
hlcdc.h
struct atmel_hlcdc {

struct regmap *regmap;
struct clk *periph_clk;
struct clk *sys_clk;
struct clk *slow_clk;
int irq;

};

driver/mfd/atmel-hlcdc.c
static const struct regmap_config atmel_hlcdc_regmap_config = {

.reg_bits = 32,

.val_bits = 32,

.reg_stride = 4,

.max_register = ATMEL_HLCDC_REG_MAX,

.reg_write = regmap_atmel_hlcdc_reg_write,

.reg_read = regmap_atmel_hlcdc_reg_read,

.fast_io = true,
};

static int atmel_hlcdc_probe(struct platform_device *pdev)
{

struct atmel_hlcdc_regmap *hregmap;
struct device *dev = &pdev->dev;
struct atmel_hlcdc *hlcdc;
struct resource *res;

[...]
hlcdc->regmap = devm_regmap_init(dev, NULL, hregmap,

&atmel_hlcdc_regmap_config);
if (IS_ERR(hlcdc->regmap))

return PTR_ERR(hlcdc->regmap);

dev_set_drvdata(dev, hlcdc);
[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/30

Example: pwm-atmel-hlcdc

static int atmel_hlcdc_pwm_probe(struct platform_device *pdev)
{

const struct of_device_id *match;
struct device *dev = &pdev->dev;
struct atmel_hlcdc_pwm *chip;
struct atmel_hlcdc *hlcdc;
int ret;

hlcdc = dev_get_drvdata(dev->parent);
[...]

chip->hlcdc = hlcdc;
[...]
}

static int atmel_hlcdc_pwm_set_polarity(struct pwm_chip *c,
struct pwm_device *pwm,
enum pwm_polarity polarity)

{
struct atmel_hlcdc_pwm *chip = to_atmel_hlcdc_pwm(c);
struct atmel_hlcdc *hlcdc = chip->hlcdc;
u32 cfg = 0;

if (polarity == PWM_POLARITY_NORMAL)
cfg = ATMEL_HLCDC_PWMPOL;

return regmap_update_bits(hlcdc->regmap, ATMEL_HLCDC_CFG(6),
ATMEL_HLCDC_PWMPOL, cfg);

}- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/30

Example: atmel-flexcom

▶ Sometimes an MFD only supports one simultaneous function.
▶ The MFD driver only configures the function.

static int atmel_flexcom_probe(struct platform_device *pdev)
{

struct device_node *np = pdev->dev.of_node;
[...]

err = of_property_read_u32(np, "atmel,flexcom-mode", &opmode);
if (err)

return err;

if (opmode < ATMEL_FLEXCOM_MODE_USART ||
opmode > ATMEL_FLEXCOM_MODE_TWI)

return -EINVAL;
[...]

writel(FLEX_MR_OPMODE(opmode), base + FLEX_MR);
[...]

return of_platform_populate(np, NULL, NULL, &pdev->dev);
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/30

Example: atmel-flexcom - DT bindings

flexcom@f8034000 {
compatible = "atmel,sama5d2-flexcom";
reg = <0xf8034000 0x200>;
clocks = <&flx0_clk>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0x0 0xf8034000 0x800>;
atmel,flexcom-mode = <2>;

spi@400 {
compatible = "atmel,at91rm9200-spi";
reg = <0x400 0x200>;
interrupts = <19 IRQ_TYPE_LEVEL_HIGH 7>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_flx0_default>;

[...]
};

};
};

▶ The SPI driver from 2007 is reused and has not been modified to handle the MFD
specifics.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/30

syscon

▶ Sometimes, a set of registers is used to configure miscellaneous features from
otherwise well separated IPs

▶ Automatically creates a regmap when accessed
▶ Defined in include/linux/mfd/syscon.h
▶ Implemented in drivers/mfd/syscon.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/30

syscon: API

▶ extern struct regmap *syscon_node_to_regmap(struct device_node *np);

▶ extern struct regmap *syscon_regmap_lookup_by_compatible(const char *s);

▶ extern struct regmap *syscon_regmap_lookup_by_pdevname(const char *s);

▶ extern struct regmap *syscon_regmap_lookup_by_phandle(
struct device_node *np,
const char *property);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/30

Example: pinctrl-dove.c

static int dove_pinctrl_probe(struct platform_device *pdev)
{

struct resource *res, *mpp_res;
struct resource fb_res;
const struct of_device_id *match =

of_match_device(dove_pinctrl_of_match, &pdev->dev);
pdev->dev.platform_data = (void *)match->data;

[...]
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!res) {

dev_warn(&pdev->dev, "falling back to hardcoded MPP4 resource\n");
adjust_resource(&fb_res,

(mpp_res->start & INT_REGS_MASK) + MPP4_REGS_OFFS, 0x4);
res = &fb_res;

}

mpp4_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mpp4_base))

return PTR_ERR(mpp4_base);

res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
if (!res) {

dev_warn(&pdev->dev, "falling back to hardcoded PMU resource\n");
adjust_resource(&fb_res,

(mpp_res->start & INT_REGS_MASK) + PMU_REGS_OFFS, 0x8);
res = &fb_res;

}

pmu_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pmu_base))

return PTR_ERR(pmu_base);

gconfmap = syscon_regmap_lookup_by_compatible("marvell,dove-global-config");
[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/30

simple-mfd

▶ Simple DT binding
▶ Documented in Documentation/devicetree/bindings/mfd/mfd.txt
▶ Implemented in drivers/of/platform.c
▶ It is actually an alias to simple-bus
▶ Used in conjunction with syscon to create the regmap, it allows to avoid writing

an MFD driver.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/30

Example: system-timer

arch/arm/boot/dts/at91rm9200.dtsi
st: timer@fffffd00 {

compatible = "atmel,at91rm9200-st", "syscon", "simple-mfd";
reg = <0xfffffd00 0x100>;
interrupts = <1 IRQ_TYPE_LEVEL_HIGH 7>;
clocks = <&slow_xtal>;

watchdog {
compatible = "atmel,at91rm9200-wdt";

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/30

Example: system-timer

drivers/clocksource/timer-atmel-st.c
static struct regmap *regmap_st;
[...]
static void __init atmel_st_timer_init(struct device_node *node)
{

unsigned int val;
int irq, ret;

regmap_st = syscon_node_to_regmap(node);
if (IS_ERR(regmap_st))

panic(pr_fmt("Unable to get regmap\n"));

/* Disable all timer interrupts, and clear any pending ones */
regmap_write(regmap_st, AT91_ST_IDR,

AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS);
regmap_read(regmap_st, AT91_ST_SR, &val);

[...]
}
CLOCKSOURCE_OF_DECLARE(atmel_st_timer, "atmel,at91rm9200-st",

atmel_st_timer_init);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/30

Example: system-timer

drivers/watchdog/at91rm9200_wdt.c
static struct regmap *regmap_st;
[...]
static int at91wdt_probe(struct platform_device *pdev)
{

struct device *dev = &pdev->dev;
struct device *parent;

[...]
parent = dev->parent;
if (!parent) {

dev_err(dev, "no parent\n");
return -ENODEV;

}

regmap_st = syscon_node_to_regmap(parent->of_node);
if (IS_ERR(regmap_st))

return -ENODEV;
[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/30

Questions?

Alexandre Belloni
alexandre.belloni@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2015/elce/belloni-mfd-regmap-syscon/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/30

http://bootlin.com/pub/conferences/2015/elce/belloni-mfd-regmap-syscon/

