
Linux debugging, profiling, tracing and performance analysis
training

On-line seminar, 4 sessions of 4 hours
Latest update: May 08, 2024

Title Linux debugging, profiling, tracing and performance analysis training

Training objectives • Be able to understand the main concepts of Linux that are relevant for
performance analysis: process, threads, memory management, virtual
memory, execution contexts, etc.

• Be able to analyze why a system is loaded and what are the elements
that contributes to this load using common Linux observability tools.

• Be able to debug an userspace application using gdb, either live or
after a crash, and analyze the contents of ELF binaries.

• Be able to trace and profile a complete userspace application and its
interactions with the Linux kernel in order to fix bugs using strace,
ltrace, perf or Callgrind.

• Be able to understand classical memory issues and analyze them using
valgrind, libefence or Massif.

• Be able to trace and profile the entire Linux system, using perf, ftrace,
kprobes, eBPF tools, kernelshark or LTTng

• Be able to debug Linux kernel issues: debug kernel crashes live or
post-mortem, analyze memory issues at the kernel level, analyze lock-
ing issues, use kernel-level debuggers.

Duration Four half days - 16 hours (4 hours per half day)

Pedagogics • Lectures delivered by the trainer, over video-conference. Participants
can ask questions at any time.

• Practical demonstrations done by the trainer, based on practical labs,
over video-conference. Participants can ask questions at any time.
Optionally, participants who have access to the hardware accessories
can reproduce the practical labs by themselves.

• Instant messaging for questions between sessions (replies under 24h,
outside of week-ends and bank holidays).

• Electronic copies of presentations, lab instruc-
tions and data files. They are freely available at
https://bootlin.com/doc/training/debugging.

Trainer One of the engineers listed on:
https://bootlin.com/training/trainers/

https://bootlin.com/doc/training/debugging
https://bootlin.com/training/trainers/


Language Oral lectures: English, French.
Materials: English.

Audience Companies and engineers interested in debugging, profiling and tracing
Linux systems and applications, to analyze and address performance or la-
tency problems.

Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands:
participants must be familiar with the Linux command line. Par-
ticipants lacking experience on this topic should get trained by
themselves, for example with our freely available on-line slides at
bootlin.com/blog/command-line/.

• Minimal experience in embedded Linux development: participants
should have a minimal understanding of the architecture of embedded
Linux systems: role of the Linux kernel vs. user-space, development
of Linux user-space applications in C. Following Bootlin’s Embedded
Linux course at bootlin.com/training/embedded-linux/ allows to fulfill
this pre-requisite.

• Minimal English language level: B1, according to the Common
European Framework of References for Languages, for our ses-
sions in English. See bootlin.com/pub/training/cefr-grid.pdf for self-
evaluation.

Required equipment
• Computer with the operating system of your choice, with the Google
Chrome or Chromium browser for videoconferencing.

• Webcam and microphone (preferably from an audio headset)
• High speed access to the Internet

Certificate Only the participants who have attended all training sessions, and who have
scored over 50% of correct answers at the final evaluation will receive a
training certificate from Bootlin.

Disabilities Participants with disabilities who have special needs are invited to contact
us at training@bootlin.com to discuss adaptations to the training course.

https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf


Real hardware in practical demos

The hardware platform used for the practical de-
mos of this training session is the STMicroelec-
tronics STM32MP157D-DK1 Discovery board
board, which features:

• STM32MP157D (dual Cortex-A7) CPU
from STMicroelectronics

• USB powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino Uno v3-compatible headers
• Audio codec
• Misc: buttons, LEDs

Half day 1

Lecture - Linux application stack

• Global picture: understanding the general architecture of a Linux system, overview of the major
components.

• What is the difference between a process and a thread, how applications run concurrently.
• ELF files and associated analysis tools.
• Userspace application memory layout (heap, stack, shared libraries mappings, etc).
• MMU and memory management: physical/virtual address spaces.
• Kernel context switching and scheduling
• Kernel execution contexts: kernel threads, workqueues, interrupt, threaded interrupts, softirq



Lecture - Common analysis & observability tools

• Analyzing an ELF file with GNU binary utilities (objdump, addr2line).
• Tools to monitor a Linux system: processes, memory usage and mapping, resources.
• Using vmstat, iostat, ps, top, iotop, free and understanding the metrics they provide.
• Pseudo filesystems: procfs, sysfs and debugfs.

Demo - Check what is running on a system and its load

• Observe running processes using ps and top.
• Check memory allocation and mapping with procfs and pmap.
• Monitor other resources usage using iostat, vmstat and netstat.

Lecture - Debugging an application

• Using gdb on a live process.
• Understanding compiler optimizations impact on debuggability.
• Postmortem diagnostic using core files.
• Remote debugging with gdbserver.
• Extending gdb capabilities using python scripting

Half day 2

Demo - Solving an application crash

• Analysis of compiled C code with compiler-explorer to understand optimizations.
• Managing gdb from the command line.
• Debugging a crashed application using a coredump with gdb.
• Using gdb Python scripting capabilities.



Lecture - Tracing an application Demo – Debugging application issues

• Tracing system calls with strace.
• Tracing library calls with ltrace.
• Overloading library functions using LD_-
PRELOAD.

• Analyze dynamic library calls from an ap-
plication using ltrace.

• Overloading library functions using LD_-
PRELOAD.

• Analyzing an application system calls using
strace.

Lecture - Memory issues Demo – Debugging memory issues

• Usual memory issues: buffer overflow, seg-
mentation fault, memory leaks, heap-stack
collision.

• Memory corruption tooling, valgrind,
libefence, etc.

• Heap profiling usingMassif and heaptrack

• Memory leak and misbehavior detection
with valgrind and vgdb.

• Visualizing application heap usingMassif.

Half day 3

Lecture – Application profiling Demo - Application profiling

• Performances issues.
• Gathering profiling data with perf.
• Analyzing an application callgraph using
Callgrind and KCachegrind.

• Interpreting the data recorded by perf.

• Profiling an application with Call-
grind/KCachegrind.

• Analyzing application performance with
perf.

• Generating a flamegraph using Flame-
Graph.



Lecture - System wide profiling and tracing

• System wide profiling using perf.
• Using kprobes to hook on kernel code without recompiling.
• eBPF tools (bcctools, bpftrace, etc) for complex tracing scenarios.
• Application and kernel tracing and visualization using ftrace, kernelshark or LTTng

Half day 4

Demo - System wide profiling and tracing

• System profiling with perf.
• IRQ latencies using ftrace.
• Tracing and visualizing system activity using kernelshark or LTTng

Lecture - Kernel debugging Demo - Kernel debugging

• Kernel compilation results (vmlinux,
System.map).

• Understanding and configuring kernel oops
behavior.

• Post mortem analysis using kernel crash
dump with crash.

• Memory issues (KASAN, UBSAN, Kmem-
leak).

• Debugging the kernel using KGDB and
KDB.

• Kernel locking debug configuration options
(lockdep).

• Other kernel configuration options that are
useful for debug.

• Analyzing an oops after using a faulty mod-
ule with obdjump and addr2line.

• Debugging a deadlock problem using
PROVE_LOCKING options.

• Detecting undefined behavior with UBSAN
in kernel code.

• Find a module memory leak using kmem-
leak.

• Debugging a module with KGDB.


