Linux debugging, profiling, tracing and performance analysis
training

Practical Labs

bootlin

https://bootlin.com

May 08, 2024

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

About this document

Updates to this document can be found on https://bootlin.com/doc/training/debugging.

This document was generated from LaTeX sources found on https://github.com/bootlin/training-materials.
More details about our training sessions can be found on https://bootlin.com/training.

Copying this document

© 2004-2024, Bootlin, https://bootlin.com.

This document is released under the terms of the Creative Commons CC BY-SA 3.0 license

This means that you are free to download, distribute and even modify it, under certain
conditions.

Corrections, suggestions, contributions and translations are welcome!

© 2004-2024 Bootlin, CC BY-SA license

https://bootlin.com/doc/training/debugging
https://github.com/bootlin/training-materials
https://bootlin.com/training
https://bootlin.com
https://creativecommons.org/licenses/by-sa/3.0/
https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

Training setup

Download files and directories used in practical labs

Install lab data

For the different labs in this course, your instructor has prepared a set of data (kernel images, kernel config-
urations, root filesystems and more). Download and extract its tarball from a terminal:

$ cd
$ wget https://bootlin.com/doc/training/debugging/debugging-labs.tar.xz
$ tar xvf debugging-labs.tar.xz

Lab data are now available in an debugging-1labs directory in your home directory. This directory contains
directories and files used in the various practical labs. It will also be used as working space, in particular to
keep generated files separate when needed.

Update your distribution
To avoid any issue installing packages during the practical labs, you should apply the latest updates to the
packages in your distro:

$ sudo apt update
$ sudo apt dist-upgrade

You are now ready to start the real practical labs!

Install extra packages

Feel free to install other packages you may need for your development environment. In particular, we
recommend to install your favorite text editor and configure it to your taste. The favorite text editors of
embedded Linux developers are of course Vim and Emacs, but there are also plenty of other possibilities,
such as Visual Studio Code', GEdit, Qt Creator, CodeBlocks, Geany, etc.

It is worth mentioning that by default, Ubuntu comes with a very limited version of the vi editor. So if you
would like to use vi, we recommend to use the more featureful version by installing the vim package.

More guidelines
Can be useful throughout any of the labs

e Read instructions and tips carefully. Lots of people make mistakes or waste time because they missed
an explanation or a guideline.

¢ Always read error messages carefully, in particular the first one which is issued. Some people stumble
on very simple errors just because they specified a wrong file path and didn’t pay enough attention to
the corresponding error message.

e Never stay stuck with a strange problem more than 5 minutes. Show your problem to your colleagues
or to the instructor.

e You should only use the root user for operations that require super-user privileges, such as: mounting
a file system, loading a kernel module, changing file ownership, configuring the network. Most regular
tasks (such as downloading, extracting sources, compiling...) can be done as a regular user.

IThis tool from Microsoft is Open Source! To try it on Ubuntu: sudo snap install code --classic

© 2004-2024 Bootlin, CC BY-SA license 3

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

e If you ran commands from a root shell by mistake, your regular user may no longer be able to handle
the corresponding generated files. In this case, use the chown -R command to give the new files back
to your regular user.

Example: $ sudo chown -R myuser.myuser linux/

4 © 2004-2024 Bootlin, CC BY-SA license

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

Preparing the system

Objectives:
« Prepare the STM32MP157D board

Install needed packages

You need some development packages before being able to build the target firmware:

$ sudo apt install build-essential git

Building the image

We created a special image for the training. This image will contain everything we need (tools, configured
kernel, etc). This image will be built with buildroot which allows to build a complete image for embedded
systems.

$ cd /home/$USER/debugging-labs/

git clone https://github.com/bootlin/buildroot
cd buildroot

git checkout debugging-training/2024.02

make stm32mp157a_dk1_debugging_defconfig

make

& P B B P

This will take a few minutes. At the end of the build, a images directory will contain the images that can be
used on the board. During this course, we will use a kernel located on a sdcard and a rootfs via NFS. This
will let us transfer data freely from and to the target board.

The rootfs should be extracted at /home/$USER/debugging-labs/nfsroot using this command:

$ tar xvf output/images/rootfs.tar -C /home/$USER/debugging-labs/nfsroot

We will also export the CROSS_COMPILE variable to set the toolchain as our cross compiling toolchain:

$ export CROSS_COMPILE=/home/$USER/debugging-labs/buildroot/output/host/bin/arm-1inux-

This export needs to be either done in each shell in which CROSS_COMPILE is going to be used or added to
your shell configuration (.bashrc for instance)

Prepare the STM32MP1 Discovery Kit 1

The STM32M1 Discovery Kit 1 is powered via a USB-C cable, which you need to connect to the CN6 (also
labeled PWR_IN) connector.

In addition, to access the debug serial console, you need to use a micro-USB cable connected to the CN11
(also labeled ST-LINK) connector.

Once your micro-USB cable is connected, a /dev/ttyACM@ device will apear on your PC. You can see this
device appear by looking at the output of dmesg on your workstation.

To communicate with the board through the serial port, install a serial communication program, such as
picocom:

© 2004-2024 Bootlin, CC BY-SA license 5

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

sudo apt install picocom

If you run 1s -1 /dev/ttyACM@, you can also see that only root and users belonging to the dialout group
have read and write access to this file. Therefore, you need to add your user to the dialout group:

sudo adduser $USER dialout

Important: for the group change to be effective, in Ubuntu 18.04, you have to completely reboot the system
2. A workaround is to run newgrp dialout, but it is not global. You have to run it in each terminal.

Now, you can run picocom -b 115200 /dev/ttyACM®, to start serial communication on /dev/ttyACMO, with
a baudrate of 115200. If you wish to exit picocom, press [Ctrl][a] followed by [Ctrl][x].

There should be nothing on the serial line so far, as the board is not powered up yet.

Set up the Ethernet communication on the workstation

With a network cable, connect the Ethernet port of your board to the one of your computer. If your computer
already has a wired connection to the network, your instructor will provide you with a USB Ethernet adapter.
A new network interface should appear on your Linux system.

Find the name of this interface by typing:
$ ip a

The network interface name is likely to be enxxx®. If you have a pluggable Ethernet device, it’s easy to

identify as it’s the one that shows up after pluging in the device.

Then, instead of configuring the host IP address from NetworkManager’s graphical interface, let’s do it
through its command line interface, which is so much easier to use:

$ nmcli con add type ethernet ifname en<xxx> ip4 192.168.0.1/24
Setting up the NF'S server
Install the NFS server by installing the nfs-kernel-server package:

$ sudo apt install nfs-kernel-server

Once installed, edit the /etc/exports file as root to add the following lines, assuming that the IP address
of your board will be 192.168.0.100:

/home/<user>/debugging-labs/nfsroot 192.168.0.100(rw,no_root_squash,no_subtree_check)
Of course, replace <user> by your actual user name.

Make sure that the path and the options are on the same line. Also make sure that there is no space between
the IP address and the NF'S options, otherwise default options will be used for this IP address, causing your
root filesystem to be read-only.

Then, restart the NFS server:

$ sudo exportfs -r

If there is any error message, this usually means that there was a syntax error in the /etc/exports file. Don’t
proceed until these errors disappear.

2As explained on https://askubuntu.com/questions/1045993/after-adding-a-group-logoutlogin-is-not-enough-in-18-04/.
3Following the Predictable Network Interface Names convention: https://www.freedesktop.org/wiki/Software/systemd/
PredictableNetworkInterfaceNames/

6 © 2004-2024 Bootlin, CC BY-SA license

https://askubuntu.com/questions/1045993/after-adding-a-group-logoutlogin-is-not-enough-in-18-04/
https://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/
https://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/
https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

Flashing the sdcard

In order to get a working board, you will need to flash a sdcard with the output/images/sdcard.img file.
Plug your sdcard on your computer and check on which /dev/sdX it has been mounted (you can use the
dmesg command to check that). For instance, if the sdcard has been mounted on /dev/sde, use the following
command:

$ sudo dd if=output/images/sdcard.img of=/dev/sde

$ sync

NOTE: Double-check that you are targeting the correct device before executing the dd command!
Once flashed, plug the sdcard onto the STM32MP157D board and reboot the board.

U-Boot setup

In order to use a rootfs on NFS, we will use an external rootfs. This can be specified by passing bootargs to
the kernel. To do so, we are going to set the bootargs U-Boot variable and save the environment. To be able
to edit U-Boot variables, we need to interrupt its standard boot sequence: with the serial console opened,
maintain Enter key while pressing once the reset button, and wait for U-Boot prompt to appear. Then, enter
the following commands:

STM32MP1> env set bootargs root=/dev/nfs ip=192.168.0.100:::::ethd
nfsroot=192.168.0.1:/home/<user>/debugging-labs/nfsroot/,nfsvers=3,tcp rw
STM32MP1> saveenv

NOTE: Be sure to replace the <user> string with the correct user.

Login
You can now run the system by pressing the RESET button on the board.

You can login on the serial console or via SSH (ssh root@192.168.0.100). The username is root and the
password is root.

© 2004-2024 Bootlin, CC BY-SA license 7

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

System status

Objectives:
« Observe running processes using ps and top.
o Check memory allocation and mapping with procfs and pmap.

« Monitor other resources usage using iostat, vmstat and netstat.

Observe system status

In order to examine the platform, you can either execute commands through the picocom terminal or open
a SSH connection.

Now that the board is up and running, let’s try to understand what is running on this system. The provided
image includes numerous tools to analyze the system. Try to answer the following questions using the
commands that were presented during the course:

1. How many CPU does this processor have?

What are the memory maps used by the dropbear process?

How much PSS memory is used by dropbear?

What is the amount of memory available for applications on the system?
How much unused memory is left on our system?

Is there swapped memory?

Is there an application using too much CPU?

How much time is spent by CPUO in system mode (kernel)?

© ®° N o W N

Is there some 10s ongoing with storage devices?

[t
o

. How many Mbytes/s are transferred from/to the MMC card?

[u—y
—_

. What is the process generating transfers to the MMC?

—
[\

. Which processor receive most of the interrupts?
13. How many interrupts were received from the MMC controller?

Once found, you can remove the files /etc/init.d/S25stress-ng and /etc/init.d/S26mmc-reader and re-
boot to have a cleaner system.

8 © 2004-2024 Bootlin, CC BY-SA license

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

Solving an application crash

Objectives:

« Analysis of compiled C' code with compiler-explorer to understand opti-
mizations.

Managing gdb from the command line.

Debugging a crashed application using a coredump with gdb.

Using gdb Python scripting capabilities.

(Bonus) configuring an IDE for debugging

Compiler explorer

Go to https://godbolt.org/ and paste the content of /home/$USER/debugging-1labs/nfsroot/root/compiler_
explorer/swap_bytes.c. Select the correct compiler for armv7 and observe the generated assembly. Try to
modify the compiler options to optimize the generation (-O3). Observe the result.

Using GDB

Take our linked_list.c program. It uses the <sys/queue.h> header which provides multiple linked-list
implementations. This program creates and fill a linked list with the names read from a file. Compile it from
your development host using the following command:

$ cd /home/$USER/debugging-labs/nfsroot/root/gdb/
$ make

By default, it will look for a word_list file located in the current directory. This program, when run on the
target, should display the list of words that were read from the file.

$./linked_list

From what you can see, it actually crashes! So we will use GDB to debug that program. We will do that
remotely since our target does not embed a full gdb, only a gdbserver, a lightweight gdb server that allows
connecting with a remote full feature GDB. Start our program on the target using gdbserver in multi mode:

$ gdbserver --multi :2000 ./linked_list

On the host side install gdb-multiarch if not already done and attach to this process using gdb-multiarch:

$ sudo apt install gdb-multiarch

$ gdb-multiarch ./linked_list

(gdb) target extended-remote 192.168.0.100:2000

(gdb) set sysroot /home/<user>/debugging-labs/buildroot/output/staging/

Then continue the execution and try to find the error using GDB. There are multiple ways to debug such
program. Here are a few hints to help you find the bug root cause:

© 2004-2024 Bootlin, CC BY-SA license 9

https://godbolt.org/
https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

Instead of waiting for the segfault to happen, you can use breakpoints to stop at a specific place
BEFORE the segfault happens

The bug is pretty reproductible here, so do not hesitate to restart the program multiple times during
your analysis to properly understand the path leading to the bug, and to run it step by step

If your breakpoint is in a loop, it may be tedious to type ”continue” multiple times to reach to execution
site you are interested in: remember that you can use conditional breakpoints and watchpoints to make
a breakpoint hit on a specific loop occurrence!

It is necessary to understand the data structures your code is using to understand why you eventually
get a segfault: take some time to get familiar with the SLIST_HEAD and SLIST_ENTRY macros, and to
print them during debugging to see how data is organized.

— You can also refer to the macro command documentation to learn how to interpret macros in gdb
during the program execution

You mave even use and call existing code during your debug session: you can for example try to print
the list by executing display_linked_list() with the p gdb command!

TIP: you can execute command automatically at GDB startup by putting them in a ~/.gdbinit file. For
instance, history can be enabled with set history save on and pretty printing of structure with set print
pretty on.

TIP: GDB features a TUI which can be spawned using Ctrl + X + A. You can switch from the command
line to the TUI view using Ctrl X + O.

NOTE: you can exit gdbserver from the connected gdb process using the monitor exit command.

Using a coredump with GDB

Sometimes, the problems only arise in production and you can only gather data once the application crashed.
This is also something that can be used if the crash is not reproducible but crashes only once in a while.
If so, we can use the kernel coredump support to generate a core dump of the faulty application and do a
post-mortem analysis.

First of all, we need to enable kernel coredumping support of programs. On the target, run:

$ ulimit -c unlimited

Then, run the program normally:

$./linked_list
Segmentation fault (core dumped)

When crashing, a core file will be generated. On your desktop computer, fix the permissions using:

$ sudo chown $USER:$USER core

Then, open this file using gdb-multiarch:

$ gdb-multiarch ./linked_list ./core

You can then inspect the program state (memory, registers, etc) at the time it crashed. While less dynamic,
it allows to pinpoint the place that triggered the crash. Here are a few hints to help you manipulate the
coredump:

« Since the coredump is only a memory snapshot (the program is not running anymore), you can not run

any process-controlling command in gdb (run, continue, step...)

10

© 2004-2024 Bootlin, CC BY-SA license

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

e However, you can print any variable which is in scope. You can even define your own commands to
ease printing our custom list:

— Use the define command to start defining a command, use end to mark its end
— In between, knowing how the data is organized, you can print some data fields with p

— You can use gdb custom variables to navigate into the list: refresh your custom variable to make
it point to the next element of the list each time you call your custom command

GDB Python support

When developing and debugging applications, sometimes we often uses the same set of commands over and
over under GDB. Rather than doing so, we can create python scripts that are integrated with GDB.

In order to display our program list from GDB, we provide a python GDB script named linked_list.py
that displays this list. You will need to fill two parts of this script to display a complete list correctly. This
python script takes the list head name and the next field name as parameters.

The part to be filled in are the pretty printer struct formatting and the iteration on the list. We would like
to display each struct name as index: name. In order to access a struct field in gdb python, you can use
self.val[’'field_name'].

Once done, you can use the following commands in your development host gdb client session to test your
script:

(gdb) source linked_list.py
(gdb) printslist name_list next

(Bonus) Configuring an IDE for debugging

While using bare gdb commands in console is enough to debug your application issues, you may want to
use some frontend to do so, for example by using GDB features directly in your IDE. Multiple frontends are
able to interact with GDB thanks to its MI interface For this example, we will configure Visual Studio Code.
Start by installing the IDE.

The firmware used for this training labs is in fact already running a gdbserver right at boot, listening on
port 9876: thanks to the --multi option, this server can be configured by the client to debug any target of
interest.

We must then provide instructions to VSCode about how to start a debug session. You may have noticed
that the labs data also provide a .vscode directory along the program sources. If you open vscode in the
sources directory, it will recognize this .vscode directory and load corresponding configuration

The .vscode directory contains a minimalistic configuration to allow remote debugging, thanks to two files:

e launch.json contains a debug configuration which indicates what is the program to debug, how to
connect to gdbserver and to configure it, where to find the missing symbols (our staging directory), etc.

e tasks.json contains a default build task: we have defined in our debug configuration that we want to
run a build before each debug session (so we are sure that the program under debug is in sync with our
sources), so we have to define this build task. Note that since we are using a NFS root, this build task
also takes in charge the ”deploy” step!

You can then open VSCode in the sources directory:

cd ~/debugging-labs/root/gdb
code .

Before being able to debug your program onto the target, you will need to install the official C/C++ extension
(you can do it directly from the "Extensions” tab in the left column).

© 2004-2024 Bootlin, CC BY-SA license 11

https://sourceware.org/gdb/current/onlinedocs/gdb.html/GDB_002fMI.html
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

You can now start the debugging session (hit the "Run and Debug” tab on the left column, then "Debug
linked list” in the list on top left, or directly hit "F5” to start the debug session). VSCode will start our
cross-gdb and connect it to the remote gdbserver, and you will be able to do everything we have done in the
console so far:

Add breakpoints by clicking on the line number you want to break in

Set conditions on breakpoint by issuing right-click on the breakpoint (red circle on the line number),
"Edit breakpoint”

In the debugging tab (left column), you can
— Check variables which are in scope
— take a look at your call stack
— add expression to watch for specific values

Control the program execution with the ”Continue”, ”"Step Over”, ”Step Into”, ”Step Out”, "Restart”,
"Stop” buttons (in the upper right section)

Use directly bare gdb commands in the debugging console: open the "Debug console” tab on the lower
part of the screen, then type any command learnt so far, but remember to prefix it with -exec

You can also refer to VSCode debug configuration documentation to learn more about available configuration
options

12

© 2004-2024 Bootlin, CC BY-SA license

https://code.visualstudio.com/docs/editor/debugging
https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

Application tracing

Objectives:
o Analyze dynamic library calls from an application using ltrace.

« Using strace to analyze program syscalls.

Itrace

On your computer, go into the 1trace lab folder:

$ cd /home/$USER/debugging-labs/nfsroot/root/ltrace/
$ make

Next, run the authent application on the target.

$ cd /root/ltrace

$ export LD_LIBRARY_PATH=$PWD

$./authent

Error: failed to authenticate the user !

Note: Since our application uses a local dynamic shared library which is not in the default paths expected
by 1d (see man 1d.so(8)), we need to provide that path using LD_LIBRARY_PATH.

As you can see, it seems our application is failing to correctly authenticate the system. Using ltrace, trace
the application on the target in order to understand what is going on.

$ ltrace ./authent

From that trace, try to find which function fails.

In order to overload this check, we can use a LD_PRELOAD a library. We’ll override the al_authent_user()
based on the authent_library.h definitions. Create a file overload. c which override the al_authent_user(),
prints the user, password and returns 0. Compile it on your development host using the following command
line:

$ ${CROSS_COMPILE}gcc -fPIC -shared overload.c -o overload.so

Finally, run your application and preload the new library using the following command on the target:

$ LD_PRELOAD=./overload.so ./authent

strace

strace is useful to debug an application when you don’t have the source. For that example, use the strace_me
binary that is present in on the target in /root/strace and run it with strace:

$ cd /root/strace
$ strace ./strace_me

Based on the output and running strace with other options, try to answer the following questions:

© 2004-2024 Bootlin, CC BY-SA license 13

https://man7.org/linux/man-pages/man8/ld.so.8.html
https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

e What are the files that are opened by this binary?
e How many time is read() called?
o Which openat system call failed?

e How many system calls are issued by the program?

14 © 2004-2024 Bootlin, CC BY-SA license

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

Debugging memory issues

Objectives:

« Memory leak and misbehavior detection with valgrind and vgdb.

valgrind & vgdb
On your development host, go into the valgrind folder and compile valgrind.c with debugging information

using:

$ cd /home/$USER/debugging-labs/nfsroot/root/valgrind
$ make

Then run it on the target. Do you notice any problem? Does it run correctly? Even though there is no
segfault, an application might have some memory leaks or even out-of-bounds accesses, uninitialized memory,
ete.

Now, run the command again with valgrind using the following command:
$ valgrind --leak-check=full ./faulty_mem_app

You'll see various errors found by valgrind
¢ Invalid memory write
e Uninitialized memory
¢ Memory leaks

In order to pinpoint exactly each error and be able to debug with gdb, vgdb can be used. We will do that
remotely on the host using gdb-multiarch. First, we need to run valgrind with vgdb enabled on the target:

$ cd /root/valgrind
$ valgrind --vgdb=yes --vgdb-error=0 --leak-check=full ./faulty_mem_app

Then, in order to do remote debugging, we also need to run vgdb in listen mode. Start another terminal in
SSH on the target and run the following command:

$ vgdb --port=1234

On the computer side, start gdb-multiarch and give it the faulty_mem_app binary which will allow to detect
the architecture and read symbols:

$ gdb-multiarch ./faulty_mem_app
Finally, we’ll need to connect to vgdb using the following gdb command:
(gdb) target remote 192.168.0.100:1234

You will then be able to debug each error using gdb and valgrind will interrupt the program each time it
detects an error. Try to solve all the problems that were encountered by valgrind.

NOTE: The backtrace for leaks is not shown on the target because all libraries are stripped and thus do
not have any debugging symbols anymore. This leads to the impossibility to use the dwarf information for

© 2004-2024 Bootlin, CC BY-SA license 15

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

backtracing.

16 © 2004-2024 Bootlin, CC BY-SA license

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

Application profiling
Objectives:
« Visualizing application heap using Massif.
« Profiling an application with Cachegrind, Callgrind and KCachegrind.

« Analyzing application performance with perf.

Massif

Massif is really helpful to understand what is going on the memory allocation side of an application. Compile
the heap_profile example that we did provide using the following command on your development host

$ cd /home/$USER/debugging-labs/nfsroot/root/heap_profile
$ make

Once compiled, run it on the target under massif using the following command:

$ cd /root/heap_profile
$ valgrind --tool=massif --time-unit=B ./heap_profile

NOTE: we use --time-unit=B to set the X axis to be based on the allocated size.

Once done, a massif.out.<pid> file will be created. This file can be displayed with ms_print. Based on the
result, can you answer the following questions:

e What is the peak allocation size of this program?
e How much memory was allocated during the program lifetime?
e Do we have memory leaks at the end of execution?

You can also observe Massif result with a graphical interface thanks to massif-visualizer. To do so, execute
the following commands on your development host:

$ cd /home/$USER/debugging-labs/nfsroot/root/heap_profile
$ sudo apt install massif-visualizer
$ massif-visualizer massif.out.*

Note: heaptrack is not available on buildroot but is available on debian. You can try the same experience
using heaptrack on your computer and visualizing the results with heaptrack_gui.

Cachegrind & Callgrind

Cachegrind and Callgrind allow to profile a userspace application by simulating the processor that will run
it. In order to analyze our application and understand where time is spent, we are going to profile it with
both tools.

Let’s start by profiling the application using the cachegrind tool. Our program takes two file names as
parameters: an input PNG image and an output one. We provided a sample image in tux_small.png which
can be used as an input file. First let’s compile it using the following commands on our development host:

© 2004-2024 Bootlin, CC BY-SA license 17

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

$ cd /home/$USER/debugging-labs/nfsroot/root/app_profiling
$ make

We are going to profile cache usage using Cachegrind with the following command on the target:
$ valgrind --tool=cachegrind --cache-sim=yes ./png_convert tux_small.png out.png

The execution will take some time and a cachegrind.out.<pid> will be generated. Once finished, on the
host, fix the permissions on the cachegrind.out.x* file to be able to open it with Kcachegrind:

$ sudo chown $USER:$USER cachegrind.out.*

Analyze the results with Kcachegrind in order to understand the function that generates most of the D cache
miss time.

Based on that result, modify the program to be more cache efficient. Run again the cachegrind analysis to
check that the modifications were actually effective.

We also profile the execution time using callgrind by running valgrind again on the target but with a different
tool:

$ valgrind --tool=callgrind ./png_convert tux_small.png out.png
Again, on the host platform, fix the permissions of the file using:
$ sudo chown $USER:$USER callgrind.out.x*

Again, analyze the results using Kcachegrind. This time, the view is different and allow to display all the
call graphs

Looking at the results, it seems like our conversion function is actually taking a negligible time. However,
valgrind simulate the program with an ”ideal” cache. In real life, the processor is often used by other
applications and the kernel also takes some time to execute which leads to cache disturbance.

Perf

In order to have a better view of the performance of our program in a real system, we will use perf. In order
to gather performance counter from the hardware, we will run our program using perf stat. We would like
to observe the number of L1 data cache store misses. In order to select the correct event, use perf list on
the target to find it amongst the cache events:

$ perf list cache
Once found, execute the program on the target using perf stat and specify that event using -e:
$ perf stat -e L1-dcache-store-misses ./png_convert tux.png out.png

Revert the modifications that we did to invert the program loops and again, measure the amount of misses.

After that, we will record our program execution using the perf record command to obtain a callgrind like
result.

$ perf record ./png_convert tux_small.png out.png

Once recorded, a perf.data file will be generated. This file will contain the traces that have been recorded.
These traces can be analyzed using perf report on the development host:

$ sudo chown $USER:$USER perf.data
$ perf report --symfs=/home/$USER/debugging-labs/buildroot/output/staging/
-k /home/$USER/debugging-labs/buildroot/output/build/linux-5.13/vmlinux

18 © 2004-2024 Bootlin, CC BY-SA license

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

You will quickly notice that the output is not the same as valgrind because it displays the time spent per
function (excluding function calls inside them). This allows to find which function takes most of the execution
time. In order to compare this output to the valgrind one, we can run perf and also record the callgraph
using the --call-graph option.

$ perf record --call-graph dwarf ./png_convert tux_small.png out.png

We specify that we want to record the call graph using the DWARF information that are contained in ELF
file (compiled with -g). Once recorded, on the desktop platform, display the results with perf report and
compare them with callgrind ones on your development platform.

NOTE: the vmlinux file used for the -k option must match the kernel build id that is running on the board
or perf will not use it.

NOTE: in order to annotate the disassembled code and display the time spent for each instruction, CROSS_
COMPILE must be set.

© 2004-2024 Bootlin, CC BY-SA license 19

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

System wide profiling and tracing

Objectives:
« System profiling with trace-cmd and kernelshark.
« Tracing and visualizing system activity using LT Tng and trace-compass.

« (Bonus) System profiling with perf and FlameGraphs.

ftrace & uprobes

First of all, we will start a small program on the target using the following command:

$ mystery_program 1000 200 2 &

In order to trace a full system, we can use ftrace. However, if we want to trace the userspace, we’ll need
to add new tracepoints using uprobes. This can be done manually with the uprobe sysfs interface or using
perf probe.

Before starting to profile, we will compile our program to be instrumented. On your development host, run:

$ cd /home/$USER/debugging-labs/nfsroot/root/system_profiling
$ make

On the target, we will create a uprobe in the main function of the crc_random program each time a crc is
computed. First, let’s list the line numbers that are recognized by perf to add a uprobe:

$ cd /root/system_profiling
$ perf probe --source=./ -x ./crc_random -L main

Notes:
e In order to be able to add such userspace probe, perf needs to access symbols and source file
o If perf output is filled with misinterpreted ANSI escape sequences, you can append | cat to the command

Then, we can create a uprobe and capture the crc value using:
$ perf probe --source=./ -x ./crc_random main:35 crc

We can finally trace the application using trace-cmd with this event. We will use the remote tracing capa-
bilities of trace-cmd to do that. First, we will start the trace-cmd server on the desktop platform:

trace-cmd listen -p 4567

Then, on the target, run trace-cmd with the -N parameter to specify the remote trace-cmd server. Interrupt
it after about 50 CRC computations in order to have a meaningful trace.

$ trace-cmd record -N 192.168.0.1:4567 -e probe_crc_random:main_L35 ./crc_random
~C

Then, using kernelshark tool on the host, analyze the trace:

20 © 2004-2024 Bootlin, CC BY-SA license

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

$ sudo apt install kernelshark
$ kernelshark

We can see that something is wrong, our process does not seem to compute crc at a fixed rate. Let’s trace
the sched_switch events to see what is happening:

$ trace-cmd record -N 192.168.0.1:4567 -e sched_switch -e probe_crc_random:main_L35 ./crc_\
random
e

Reanalyze the traces with kernelshark and try to understand what is going on.

LTTng

In order to observe our program performance, we want to instrument it with tracepoints. We would like to
know how much time it takes to compute the crc32 of a specific buffer.

In order to do so, add tracepoints to your program which will allow to measure this. We’ll add 2 tracepoints:
e One for the start of crc32 computation (compute_crc_start) without any arguments.

o Another for the end of cre32 computation (compute_crc_end) with a crc int argument that will be
displayed as an hexadecimal integer using lttng_ust_field_integer_hex() output formatter.

In order to create these tracepoints easily, we will create a crc_random-tp.tp file and generate the trace-
points using 1ttng-gen-tp. In order to install this tool, the 1liblttng-ust-dev should be installed in your
development host:

sudo apt install liblttng-ust-dev

These tracepoints should belong to the crc_random provider namespace. Once written, you can modify
the Makefile by adding a new rule and modifying the existing one to generate the tracepoints files using
lttng-gen-tp:

CC=${CROSS_COMPILE}gcc

crc_random: crc_random.c crc_random-tp.o
${CC} $* -g3 -llttng-ust -o %@

crc_random-tp.o: crc_random-tp.tp
CC=${CC} 1ttng-gen-tp $<

You can then use the new tracepoints in your program to trace specific points of execution as requested.

Finally, on the target, enable the program tracepoints, run it and collect tracepoints. We are going to do
that remotely using the 1ttng-relayd tool on the remote computer:

$ sudo apt install lttng-tools
$ 1ttng-relayd --output=~/debugging-labs/traces

Make sure not give a path inside the nfsroot to 1ttng-relayd on your computer, otherwise it may encounter
permission issues and will fail to create the traces directory.

Then on the target, start the trace acquisition using:

$ lttng-sessiond --daemonize

$ 1lttng create crc_session --set-url=net://192.168.0.1

$ 1ttng enable-event --userspace crc_random:compute_crc_start
$ lttng enable-event --userspace crc_random:compute_crc_end

© 2004-2024 Bootlin, CC BY-SA license 21

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

$ lttng enable-event --kernel sched_switch
$ lttng start

$./crc_random

$ # Interrupt the program after a while

$ lttng destroy

From there, you can safely stop 1ttng-relayd on your computer.

Once finished, the traces will be visible in ~/debugging-1labs/traces/<hostname>/<session> on the remote
computer. In our case, the hostname is buildroot so traces will be located in $PWD/traces/buildroot/
<session>

Using babeltrace2, you can display the raw traces that were acquired directly on your development host:

$ sudo apt install babeltrace?2
$ babeltrace2 ~/debugging-labs/traces/buildroot/<session>/

In order to analyze our traces more visually, we are going to use tracecompass. Download tracecompass
latest version and extract it on your host using:

$ wget https://ftp.fau.de/eclipse/tracecompass/releases/8.1.0/rcp/\
trace-compass-8.1.0-20220919-0815-1inux.gtk.x86_64.tar.gz
$ tar -xvf trace-compass-*.tar.gz

Run it

$ cd trace-compass*
$./tracecompass

To load the collected data in tracecompass, use the File -> Import... menu command, and in the Trace
Import form:

« enable the Select root directory option (if not yet enabled) and use the Browse button to and open
the traces/buildroot/crc_session-* directory

e enable the Create experiment checkbox and name the experiment debugging_lab
e press Finish to load the data and get back to the main window

This loads both the kernel and the user space traces and create a new “experiment” that merges them both. In
the left pane, open the Tracing -> Experiments [1] hierarchy and double click on the debugging_lab [2]
item to display the merged trace. Explore the interface, and try to follow the task execution on both the
Resources view and in the Control flow one.

(Bonus) System profiling with perf and FlameGraphs

In order to profile the whole system, we are going to use perf and try to find the function that takes most of
the time executing.

First of all, we will run a global recording of functions and their backtrace on (all CPUs) during 10 seconds
using the following command on the target:

$ perf record -F 99 -g -- sleep 10

This command will generate a perf.data file that can be used on a remote computer for further analysis.
Copy that file and fix the permissions using chown:

$ cd /home/$USER/debugging-labs/buildroot/output/build/linux-5.13/
$ sudo cp /home/$USER/debugging-labs/nfsroot/root/system_profiling/perf.data .
$ sudo chown $USER:$USER perf.data

22 © 2004-2024 Bootlin, CC BY-SA license

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

We will then use perf report to visualize the aquired data:

$ perf report --symfs=/home/$USER/debugging-labs/buildroot/output/staging/
-k /home/$USER/debugging-labs/buildroot/output/build/linux-5.13/vmlinux

Another useful tool for performance analysis is flamegraphs. Latest perf version includes a builtin support for
flamegraphs but the template is not available on debian so we will use another support provided by Brendan
Gregg scripts.

$ git clone https://github.com/brendangregg/FlameGraph.git
$ perf script | ./FlameGraph/stackcollapse-perf.pl | ./FlameGraph/flamegraph.pl > flame.html

Using this flamegraph, analyze the system load.

TIP: if the generated graph is not relevant/missing symbols, you may try to to all symbols translation in the
target before generating the graph on host, i.e use perf script on the target, and bring back the result on host
and provide it to Flamegraph scripts

You can also generate a Flamegraph on previous labs: for example you can re-do a recording on png_convert
from the application profiling lab, generate the corresponding Flamegraph and confirm your observations
about most time-consuming functions.

© 2004-2024 Bootlin, CC BY-SA license 23

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

Kernel debugging

Objectives:

« Debugging locks and sleeps mistakes using PROVE_LOCKING and DE-
BUG ATOMIC SLEEP options.

Find a module memory leak using kmemleak.

Analyzing an oops.

Debugging with KGDB.

Setting up Kexec & kdump.

Locking and sleeps problems

CONFIG_PROVE_LOCKING and CONFIG_DEBUG_ATOMIC_SLEEP have been enabled in the provided kernel image.
First, compile the module on your development host using the following command line:

cd /home/$USER/debugging-labs/nfsroot/root/locking

export CROSS_COMPILE=/home/$USER/debugging-labs/buildroot/output/host/bin/arm-1linux-
export ARCH=arm

export KDIR=/home/$USER/debugging-labs/buildroot/output/build/linux-5.13/

make

L A

On the target, load the locking.ko module and look at the output in dmesg:

cd /root/locking
insmod locking_test.ko
dmesg

Once analyzed, unload the module. Try to understand and fix all the problems that have been reported by
the lockdep system.

Kmemleak

The provided kernel image contains kmemleak but it is disabled by default to avoid having a large overhead.
In order to enable it, reboot the target and enable kmemleak by adding kmemleak=on on the command line.
Interrupt U-Boot at reboot and modify the bootargs variable:

STM32MP> env edit bootargs
STM32MP> <existing bootargs> kmemleak=on
STM32MP> boot

Then compile the dummy test module on your development host:

$ cd /home/$USER/debugging-labs/nfsroot/root/kmemleak
$ export CROSS_COMPILE=/home/$USER/debugging-labs/buildroot/output/host/bin/arm-1linux-
$ export ARCH=arm

24 © 2004-2024 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PROVE_LOCKING
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_ATOMIC_SLEEP
https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

$ export KDIR=/home/$USER/debugging-labs/buildroot/output/build/linux-5.13/
$ make

On the target, load the kmemleak_test.ko and trigger an immediate kmemleak scan using:
cd /root/kmemleak
insmod kmemleak_test.ko

rmmod kmemleak_test
echo scan > /sys/kernel/debug/kmemleak

Note that you might need to run the scan command several times before it detects a leakage due to memory
still containing references to the leaked pointer. Soon after that, the kernel will report that some leaks have
been identified. Display them and analyze them using:

cat /sys/kernel/debug/kmemleak

You will see that the symbols addresses do not make sense. This is due to the kptr_restrict configuration
which must be change to allow displaying pointer addresses. To do so, use the following command on the
target:

sysctl kernel.kptr_restrict=1

You can use addr2line to identify the location in source code of the lines that did cause the reports. You
may need to substract module loading address: you can guess the address by taking a look at /proc/modules
while the module is loaded.

You will also notice other memory leaks that are actually some real memory leaks that did exist in the kernel
version used for this training !

OOPS analysis

We noticed that the watchdog command generated a crash on the kernel. In order to reproduce the crash,
run the following command on the target:

$ watchdog -T 10 -t 5 /dev/watchdogd

Immediatly after executing this commands, you’ll see that the kernel will report an OOPS!

Analyzing the crash message

Analyze the crash message carefully. Knowing that on ARM, the PC register contains the location of the
instruction being executed, find in which function does the crash happen, and what the function call stack
is.

Using Elixir (https://elixir.bootlin.com/linux/latest/source) or the kernel source code, have a look
at the definition of this function. In most cases, a careful review of the driver source code is enough to
understand the issue. But not in that case!

Locating the exact line where the error happens

Even if you already found out which instruction caused the crash, it’s useful to use information in the crash
report.

If you look again, the report tells you at what offset in the function this happens. We will disassemble the
code for this function to understand exactly where the issue happened.

That is where we need a kernel compiled with CONFIG_DEBUG_INFO, which is already enabled in the kernel we
compiled in the initial lab. This way, the kernel vmlinux file is compiled with -g compiler flag, which adds a
lot of debugging information (matching between source code lines and assembly for instance).

© 2004-2024 Bootlin, CC BY-SA license 25

https://elixir.bootlin.com/linux/latest/source
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_INFO
https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

Using addr2line, find the exact source code line were the crash happened. For that, you can use the following
command on your development host:

$ addr2line -e /home/$USER/debugging-labs/buildroot/output/build/1linux-5.13/vmlinux
-a <crash_address>

We can even go a step further and use the cross GDB to open vmlinux and locate the function and corre-
sponding offset in assembly

$ ${CROSS_COMPILE}gdb /home/$USER/debugging-labs/buildroot/output/build/linux-5.13/vmlinux
(gdb) disassemble <function>

This can also be done automatically using decode_stacktrace.sh. First, copy/paste the OOPS message into
the ~/debugging-labs/oops. txt file. Then, using the script provided by the kernel, execute the following
command:

$ cd /home/$USER/debugging-labs/buildroot/output/build/linux-5.13/

$ export ARCH=arm

$ export CROSS_COMPILE=/home/$USER/debugging-labs/buildroot/output/host/bin/arm-1linux-
$./scripts/decode_stacktrace.sh vmlinux < ~/debugging-labs/oops.txt

KGDB debugging

In order to debug this OOPS, we’ll use KGDB which is an in-kernel debugger. The provided image already
contains the necessary KGDB support and the watchdog has been disabled to avoid rebooting while debug-
ging. In order to use KGDB and the console simultaneously, compile and run kdmx on your development
host:

$ cd /home/$USER/debugging-labs

$ git clone https://git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git
$ cd agent-proxy/kdmx

$ make

$./kdmx -n -d -p/dev/ttyACMO -b115200

serial port: /dev/ttyACMo

Initalizing the serial port to 115200 8n1

/dev/pts/7 is slave pty for terminal emulator

/dev/pts/8 is slave pty for gdb

Use <ctrl>C to terminate program

Note: the slave ports number will depend on the run.

Important: before using /dev/pts/7 and /dev/pts/8, the picocom process that did open /dev/
ttyACMO must be closed!

On the target, setup KGDB by setting the console to be used for that purpose in kgdboc module parameters:

$ echo ttySTM@ > /sys/module/kgdboc/parameters/kgdboc

Once done, trigger the crash by running the watchdog command, the system will automatically wait for
a debugger to be attached. Run the cross GDB and attach a gdb process to KGDB with the following
command:

$ ${CROSS_COMPILE}gdb ${HOME}/debugging-labs/buildroot/output/build/linux-5.13/vmlinux
(gdb) target remote /dev/pts/8

TIP: in order to allow auto-loading of python scripts, you can add set auto-load safe-path / in your
.gdbinit file

26 © 2004-2024 Bootlin, CC BY-SA license

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

First of all, confirm with GDB the information that were previously obtained post-crash. This will allow
you to also display variables values. Starting from that point, we will add a breakpoint on the watchdog_
set_drvdata() function. However, this function is called early in boot so we will need to actually attach
with KGDB at boot time. To do so, we’ll modify the bootargs to specify that. In U-Boot, add the following
arguments to bootargs using env edit:

STM32MP> env edit bootargs
STM32MP> <existing bootargs> kgdboc=ttySTM@, 115200 kgdbwait
STM32MP> boot

Then the kernel will halt during boot waiting for a GDB process to be attached. Attach gdb client from your
development host using the same command that was previously used:

$ ${CROSS_COMPILE}gdb /home/$USER/debugging-labs/buildroot/output/build/linux-5.13/vmlinux
(gdb) target remote /dev/pts/8

Note: if you prefer using gdb-multiarch instead of the cross-gdb we have built and do not specify a file to be
used, gdb-multiarch won’t be able to detect the architecture automatically and the target command will fail.
In that case, you can set the architecture using:

(gdb) set arch arm
(gdb) set gnutarget elf32-littlearm

Before continuing the execution, add a breakpoint on watchdog_set_drvdata() using the break GDB com-
mand and then continue the execution using the continue command

(gdb) break watchdog_set_drvdata
(gdb) continue

Analyze the subsequent calls and find the place where the driver data are clobbered.

TIP: you can fix the problem in "live” by modifying the content of the wdd->driver_data variable directly
using the following command:

(gdb) p/x var=hex_value

Use it to set the variable with the previous value that was used before getting clobbered with NULL. Once
done, continue the execution and verify that you fixed the problem using the watchdog command.

Note: In theory, we could have added a watchpoint to watch the address that was modified but the ARM32
platform does not provide watchpoint support with KGDB.

Debugging a module

KGDB also allows to debug modules and thanks to the GDB python scripts (1x-symbols) mainly, it is as
easy as debugging kernel core code. In order to test that feature, we are going to compile a test module and
break on it. On your development host, build the module:

cd /home/$USER/debugging-labs/nfsroot/root/kgdb

export CROSS_COMPILE=/home/$USER/debugging-labs/buildroot/output/host/bin/arm-linux-
export ARCH=arm

export KDIR=/home/$USER/debugging-labs/buildroot/output/build/linux-5.13/

make

H B B A P

Then on the target, insert the module using insmod:

cd /root/kgdb

© 2004-2024 Bootlin, CC BY-SA license 27

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

insmod kgdb_test.ko

We can now enter KGDB mode and attach the external gdb to it. We will do that using the magic SySrq ’g’
key. Before that, ensure the tty device for gdb already set, or set it now:

echo ttySTMO > /sys/module/kgdboc/parameters/kgdboc
echo g > /proc/sysrq-trigger

The kernel will then enter KGDB mode and will wait for a gdb connection. On the development platform,
start it and attach to the target:

$ ${CROSS_COMPILE}gdb /home/$USER/debugging-labs/buildroot/output/build/linux-5.13/vmlinux
(gdb) target remote /dev/pts/8

Then you will need to execute the 1x-symbols command in gdb to reload the symbols from the module.
You'll also need to pass a list of path that contains the external modules:

(gdb) 1x-symbols /home/${USER}/debugging-labs/nfsroot/root/kgdb_test/

loading vmlinux

scanning for modules in /home/<user>/debugging-labs/nfsroot/root

loading @dxbf@00000: /home/<user>/debugging-labs/nfsroot/root/kgdb_test/kgdb_test.ko

NOTE: If KGDB was already connected and the lz scripts were loaded, then 1x-symbols will be run auto-
matically on module loading.

Finally, add a breakpoint right after the pr_debug() call and continue the execution to trigger it:

(gdb) break kgdb_test.c:17
(gdb) continue

At some point, the breakpoint will be triggered. Try to display the variable i to display the current loop
value.

Note: Due to a GDB bug, sometimes, gdb will crash when continuing. You can use a temporary breakpoint
using the gdb tbreak command to workaround this problem.

Bonus: as a side quest you can try to enable the pr_debug() call using the dynamic debug feature of the
kernel. This can be done using the /proc/dynamic_debug/control file.

kdump & kexec

As presented in the course, kdump/kexec allows to boot a new kernel and dump a perfect copy of the crashed
kernel (memory, registers, etc) which can be then debugged using gdb or crash.

Building the dump-capture kernel

We will now build the dump-capture kernel which will be booted on crash using kexec. For that, we will use
a simple buildroot image with a builtin initramfs using the following commands on the development host:

$ cd /home/$USER/debugging-labs/buildroot
$ make O=build_kexec stm32mp157a_dk1_debugging_kexec_defconfig
$ make O=build_kexec

Then, we’ll copy the zImage and the device-tree to the nfs /root/kexec directory:

$ mkdir /home/$USER/debugging-labs/nfsroot/root/kexec
$ cp build_kexec/images/zImage /home/$USER/debugging-labs/nfsroot/root/kexec
$ cp build_kexec/images/stm32mp157a-dk1.dtb /home/$USER/debugging-labs/nfsroot/root/kexec

28 © 2004-2024 Bootlin, CC BY-SA license

https://bootlin.com

4
bOOtl I n Linux debugging, profiling, tracing and performance analysis training

These files are now ready to be used from the target using kexec.

Configuring kexec

First of all we need to setup a kexec suitable memory zone for our crash kernel image. This is achieved via
the linux command line. Reboot, interrupt U-Boot and add the crashkernel=60M parameter. This will tell
the kernel to reserve 60M of memory to load a ”rescue” kernel that will be booted on panic. We will also
add an option which will panic the kernel on oops to allow executing the kexec kernel.

STM32MP> env edit bootargs
STM32MP> <existing bootargs> crashkernel=60M oops=panic
STM32MP> boot

To load the crash kernel into the previously reserved memory zone, run the following command on the target:

kexec --type zImage -p /root/kexec/zImage --dtb=/root/kexec/stm32mp157a-dk1.dtb
--command-line="console=ttySTM@,115200n8 maxcpus=1 reset_devices"

Once done, you can trigger a crash using the previously mentioned watchdog command:
$ watchdog -T 10 -t 5 /dev/watchdogo

At this moment, the kernel will reboot into a new kernel using the specified kernel after displaying the
backtrace and a message:

[1181.987971] Loading crashdump kernel...
[1181.990839] Bye!

After reboot, log into the new kernel normally and bring up the ethO interface: (We will use 192.168.0.101
to avoid cloberring ssh know_hosts file for the 192.168.0.100 entry).

$ ifconfig etho 192.168.0.101

Note: ethernet setup might timeout due to some init issues after kexec boot so this commands needs to be
run another time.

$ cd /home/$USER/debugging-labs/
$ scp root@192.168.0.101:/proc/vmcore .

You can load the vmcore file using cross GDB:

$ ${CROSS_COMPILE}gdb /home/$USER/debugging-labs/buildroot/output/build/linux-5.13/vmlinux \
vmcore

© 2004-2024 Bootlin, CC BY-SA license 29

https://bootlin.com

	About this document
	Copying this document
	Training setup
	Install lab data
	Update your distribution
	Install extra packages
	More guidelines

	Preparing the system
	Install needed packages
	Building the image
	Prepare the STM32MP1 Discovery Kit 1
	Set up the Ethernet communication on the workstation
	Setting up the NFS server
	Flashing the sdcard
	U-Boot setup
	Login

	System status
	Observe system status

	Solving an application crash
	Compiler explorer
	Using GDB
	Using a coredump with GDB
	GDB Python support
	(Bonus) Configuring an IDE for debugging

	Application tracing
	ltrace
	strace

	Debugging memory issues
	valgrind & vgdb

	Application profiling
	Massif
	Cachegrind & Callgrind
	Perf

	System wide profiling and tracing
	ftrace & uprobes
	LTTng
	(Bonus) System profiling with perf and FlameGraphs

	Kernel debugging
	Locking and sleeps problems
	Kmemleak
	OOPS analysis
	Analyzing the crash message
	Locating the exact line where the error happens

	KGDB debugging
	Debugging a module

	kdump & kexec
	Building the dump-capture kernel
	Configuring kexec

